• Title/Summary/Keyword: Specific Energy Absorption

Search Result 155, Processing Time 0.025 seconds

Moisture Sorption Characteristics of Powdered Soybean Curd (분말(粉末) 두부의 수분흡착(水分吸着) 특성(特性))

  • Kim, Dong-Man;Chang, Kyu-Seob;Yoon, Han-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.292-298
    • /
    • 1980
  • In order to improve the storage stability of powdered soybean curd, moisture sorption characteristics of the curd stored at specific relative humidity and temperature were investigated. The results obtained are summarized as follows; 1. When the fresh soybean curd (2cm thickness) was dried in a hot air drier at $55^{\circ}C$, it took 18 hrs to reduce its moisture content from 85% to 8.8%, and drying rate was very high during the first 5 hrs. 2. Equilibrum moisture content (E.M.C.) of powdered soybean curd by freeze drying was higher than that of sample by got air drying, but the particle size did not influence E. M. C. 3. The monolayer value of freeze dried powder of high E. M. C was higher than that of the hot air dried(8.30 vs 7.35). 4. The free energy for moisture absorption of freeze dried powder at 11% RH were 1285.1 cal/mole, 1323.5 cal/mole at $15^{\circ}C$ and $30^{\circ}C$, respectively, and the free energy of freeze dried product was lower that of hot air dried product. 5. The moisture sorption rate constant was not affected by particle size, and it showed that the moisture sorption rate decreased as temperature was increased. The rate constant of powder produced by freeze drying were 0.00804 at $15^{\circ}C$ and 0.00696 at $30^{\circ}C$.

  • PDF

Influence of Oven Heating and Water Heating on the Physical and Mechanical Properties of Wood (열기(熱氣) 및 열수처리(熱水處理)가 목재(木材)의 이학적(理學的) 성질(性質)에 미치는 영향(影響))

  • So, Won-Tek;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1980
  • This experiment was carried out to investigate the effect of heating periods on the physical and mechanical properties of maple (Acer mono Max.) by oven heating and heating in water at 100$^{\circ}C$ for 0, 2, 4, and 6 days respectively. The results obtained are summarized as follows: 1. The green volume specific gravity due to oven heating decreased from 6 days of exposure, and that, due to heating in water decreased from 4 days of exposure. 2. The radial shrinkage due to oven heating decreased from 2 days of exposure, but that due to heating in water increased from 6 days of exposure. The tangential shrinkage due to oven heating decreased from 2 days of exposure, but that due to heating in water increased from 2 days of exposure. 3. The amount of water absorption due to oven heating decreased from 2 days of exposure, but that due to heating in water increased from 4 days of exposure. 4. The compressive strength pararelled to grain due to oven heating increased till 4 days of exposure but decreased from 6 days, and that due to heating in water decreased from 2 days of exposure. 5. The shearing strength pararelled to grain due to oven heating increased till 2 days of exposure, but decreased from 4 days of exposure, and that due to heating in water decreased from 4 days of exposure. 6. The bending strength due to oven heating increased till 4 days of exposure but decreased from 6 days, and that due to heating in water decreased from 6 days of exposure. The impact bending absorbed energy due to oven heating decreased from 4 days of exposure, and that due to hearing in water decreased from 2 days of exposure.

  • PDF

Characterization of Arsenic Immobilization in the Myungbong Mine Tailing (명봉광산의 광미 내 비소의 고정화 특성 연구)

  • Lee, Woo-Chun;Jeong, Jong-Ok;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.

Effects of Die Temperature and CO2 Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour (사출구 온도와 CO2 주입이 쌀·토마토 압출성형물의 물리적 특성 및 항산화 활성에 미치는 영향)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • The study was designed to investigate the effects of die temperature and $CO_2$ injection on the physical and antioxidant properties of extruded rice with tomato flour. Moisture content and screw speed were fixed at 25% and 150 rpm, respectively. Die temperatures and $CO_2$ injection were adjusted to 80, 110, and $140^{\circ}C$ and 0, and 300 mL/min, respectively. Specific mechanical energy input decreased as die temperature increased from 80 to $140^{\circ}C$. The expansion index increased, while bulk density decreased with $CO_2$ injection. All extrudates showed increased water soluble index (WSI) and water absorption index through the extrusion process. WSI increased as die temperature increased. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and total phenolic compounds increased as die temperature increased from 80 to $140^{\circ}C$. Total carotenoid and lycopene contents decreased through the extrusion process. Total carotenoid and lycopene contents upon 0 mL/min $CO_2$ injection and $140^{\circ}C$ die temperature were highest at $6.65{\mu}g/g$ and 2.69 mg/kg, respectively. In conclusion, $CO_2$ injection affects expansion properties while an increased die temperature leads to increased DPPH radical scavenging activity and total phenols.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF