• Title/Summary/Keyword: Specific Cutting Force Constant

Search Result 2, Processing Time 0.022 seconds

Cutting Force Estimation Considering the Specific Cutting Force Constant (비절삭 저항상수에 따른 절삭력 예측)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.