• 제목/요약/키워드: Specific Anammox activity

검색결과 4건 처리시간 0.021초

Effects of Oxidation Reduction Potential and Organic Compounds on Anammox Reaction in Batch Cultures

  • Viet, Truong Nguyen;Behera, Shishir Kumar;Kim, Ji-Won;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.210-215
    • /
    • 2008
  • The present study investigates the effect of oxidation-reduction potential (ORP) and organic compounds on specific anaerobic ammonium oxidation activity (SAA) using batch experiments. The batch tests were based on the measurement of nitrogen gas production. The relationship between ORP and dissolved oxygen (DO) concentration was found to be ORP (mV) = 160.38 + 68 log [$O_2$], where [$O_2$] is the DO concentration in mg/L. The linear relationship obtained between ORP and SAA ($R^2$ = 0.99) clearly demonstrated that ORP can be employed as an operational parameter in the Anammox process. At ORP value of -110 mV, the SAA was $0.272{\pm}0.03\;g\;N_2-N\;(g\;VSS)^{-1}\;d^{-1}$. The investigation also revealed inhibitory effect of glucose on the SAA while acetate concentration up to 640 mg COD/L (corresponding to 10 mM) had stimulating effect on the SAA. However, acetate concentration beyond 640 mg COD/L had inhibitory effect on the Anammox activity. The results indicated that nitrogen rich wastewaters containing low level organic matter could be better treated by Anammox microorganisms in real-world conditions after some acidification process.

공정 안정성에 대한 입상 및 고정화 혐기성 암모늄 산화균의 질소제거효율 비교 (Comparison of nitrogen removal efficiency on process stability for granular and immobilized anammox bacteria)

  • 최대희;배효관;정진영;김상현
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.195-206
    • /
    • 2014
  • Immobilization of anaerobic ammonium oxidizing bacteria has been studied to enhance the biomass retention of the slowly growing bacteria and the process stability. The purpose of this study was to compare the nitrogen removal efficiency of granular and immobilized anammox bacteria with poly vinyl alcohol and alginate. The specific anammox activity of the granular, homoginized and immobilized anammox bacteria were $0.016{\pm}0.0002gN/gVSS/d$, $0.011{\pm}0.001gN/gVSS/d$ and $0.007{\pm}0.0005gN/gVSS/d$, respectively. Although the activity decreased to 43.7 % of the original one due to low pH and $O_2$ exposure during the homogination and the immobilization, it was rapidly recovered within 7 days in the following continuous culture. When synthetic T-N concentrations of 100, 200, 400, 800 mg/L were fed, the immobilized anammox bacteria showed higher nitrogen removal efficiencies at all operational conditions than those of granular anammox bacteria. When the sludge retention time was shorten below 30.7 days and the reject water was fed, the nitrite removal efficiency of the granular anammox bacteria dropped to 8 % of the initial value, while that of the immobilized anammox bacteria was maintained over 95 % of the initial one. The immobilization with poly vinyl alcohol and alginate would be a feasible method to improve the performance and stability of the anammox process.

암모니아 산화균 및 아나목스균의 배양을 통한 파일롯 규모 단일 아나목스 반응기의 성공적인 시운전 (Successful start-up of pilot-scale single-stage ANAMMOX reactor through cultivation of ammonia oxidizing and ANAMMOX bacteria)

  • 최대희;진양오;이철우;정진영
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.371-379
    • /
    • 2018
  • The lack of seed sludges for Ammonium Oxidizing Bacteria (AOB) and slow-growing ANaerobic AMMonium OXidation (ANAMMOX) bacteria is one of the major problem for large-scale application. In this study, $24m^3$ of single-stage SBR (Sequencing Batch Reactor) was operated to remove nitrogen from reject water using AOB and ANAMMOX bacteria cultivated from activated sludge in the field. The ANAMMOX activity was found after 44 days of cultivation in the ANAMMOX cultivation reactor, and then $0.66kg\;N/m^3/d$ of the nitrogen removal rate was achieved at $0.78kg\;N/m^3/d$ of the nitrogen loading rate at 153 days of cultivation. The AOB cultivation reactor showed $0.2kg\;N/m^3/d$ of nitrite production rate at $0.4kg\;N/m^3/d$ of nitrogen loading rate after 36 days of operation. The cultivated ANAMMOX bacteria and AOB was mixed into the single-stage SBR. The feed distribution was applied to remove total nitrogen stably in the single-stage SBR. The nitrogen removal rate in the single-stage SBR was gradually enhanced with an increase of specific activities of both AOB and ANAMMOX bacteria by showing $0.49kg\;N/m^3/d$ of the nitrogen removal rate at $0.56kg\;N/m^3/d$ of the nitrogen loading rate at 54 days of operation.

혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정 (Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process)

  • 이환희;김이중;정진영;김지형
    • 대한환경공학회지
    • /
    • 제30권7호
    • /
    • pp.700-704
    • /
    • 2008
  • 혐기성 암모니아 산화공정에서 nitrite는 저해인자로 잘 알려져 있고, 최근에는 유리 암모니아 역시 anammox bacteria에 저해 영향을 주는 것으로 보고되고 있다. 유입수의 암모니아와 아질산의 비율이 연속운전에서 효과적인 질소제거에 중요한 인자가 되며, 연속운전 반응기에서는 유리 암모니아와 아질산의 축적을 방지하기 위해 유입수의 NH$_3$-N/NO$_2$-N-N비를 조절할 필요가 있다. 이에 본 연구에서는 다섯 가지 종류의 NH$_3$-N/NO$_2$-N-N비를 회분식 실험을 통해 잔류 암모니아성 질소와 아질산성 질소의 농도를 최소화하는 비를 조사하였다. 회분식 실험 결과 실험 26시간 후에 1.00 : 1.30의 비에서 88%에 달하는 총질소 제거율이 나타났다. 그리고 혐기성 암모늄 산화 반응은 0차 반응을 나타내었고, 암모니아와 아질산의 반응 속도상수는 1.00 : 1.30의 비에서 각각 7.66 mg/L$\cdot$hr과 11.89 mg/L$\cdot$hr로 가장 높게 나타났다. 혐기성 암모늄 산화균 활성도를 측정해본 결과 1.00 : 1.15의 비에서 미생물의 활성도가 가장 우수한 것으로 나타났다. 회분식 실험의 결과를 통해, 이론적 반응비과 비슷한 1.00:1.30에서는 반응속도가 크고 총질소 제거율도 높은 반면 혐기성 암모늄 산화균은 이론적 반응비보다 다소 낮은 아질산 농도에서 안정하다는 것을 확인할 수 있었다.