• Title/Summary/Keyword: Species-specific PCR

Search Result 649, Processing Time 0.02 seconds

Rapid Detection of the pathogenic agent of Bacterial white enteritis of Larval and Juvenile Stages in Olive flounder (Paralichthys olivaceus) (넙치(Paralichthys olivaceus)자치어 장관백탁증(Bacterial white enteritis) 원인균의 신속 검출)

  • Mun, Yeong-Geon;Park, Geun-Tae;Son, Hong-Ju;Lee, Sang-Hyeon;Lee, Jeong-Min;Heo, Mun-Su
    • Journal of fish pathology
    • /
    • v.17 no.3
    • /
    • pp.159-169
    • /
    • 2004
  • Bacterial wihte enteritis ocurred by infection of V. ichthyoenteri is a devastating disease in olive flounder (Paralichthys olivaceus) hatcheries in Korea. Since white enteritis has been a problem in aquqtic industries, necessity of a rapid detection method is increased. In an attempt to develop rapid PCR method the detection of V. ichthyoenteri, we examined the 16S-23S rRNA intergenic spacer region(ISR) of V. ichthyoenteri and developed species-specific primer for V. ichthyoenteri. The intergenic spacers were amplified by primers complementary to conserved region of 16S and 23S rRNA genes. The intergenic spacer region between the 16S and 23S rRNA genes of V. ichthoenteri were investigated by PCR fragment length typing and DNA sequencing. Analysis of the ISR sequences showed that V. ichthyoenteri contains one types of polymorphic ISRs. The size of ISRs ranged 348bp length and not contains tRNA genes. Mutiple alignment of representative sequences from different Vibrio species revealed several domains of high sequence variability, and allowed to design species-specific primer for detection of Vibrio ichthyoenteri. PCR. The specific of the primer was examined using genomic DNA prepared from 19 different Vibrio species, isolated 18group Vibrio species. The results showed that the PCR reaction using species-specific primer designed in this study can be used to detect V. ichthyoenteri.

A Phylogenetic Relationships of Araliaceae Based on PCR-RAPD and ITS Sequences (PCR-RAPD와 ITS 서열 분석에 의한 두릅나무과 (Araliaceae) 의 유연관계 분석)

  • 김남희;양덕춘;엄안흠
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.82-93
    • /
    • 2004
  • Phylogenetic relationships among species in Araliaceae were analyzed using PCR-RAPD and sequence of ITS region of nuclear ribosomal DNA based on samples collected in Korea. RAPD analysis showed various polymorphic bands which were able to differentiate species and genus, and specific bands showing variations among individuals within species. Cluster analysis using gel images revealed high molecular variability within species of Aralia eleta. No significant variation was found among cultivated species of Panax ginseng, but they showed high genetic differences with wild type of the species. In ITS analysis, specific sequences for each genus and species were observed and these were allowed to differentiate species and genus. Phylogenetic analysis using ITS sequences showed that Acanthopanax and Kalopanax had a close relationship, and Aralia and Panax are monophyletic, but genus Hedera is different species from other species in family Araliaceae in this study. The results showing close relationship between genera Aralia and Panax were also observed in RAPD analysis. Contrary to the results of RAPD analysis of Panax ginseng, sequence analysis of ITS showed no significant difference between wild mountain ginseng and cultivated species of P. ginseng. Also, both RAPD and ITS analysis of P. ginseng showed no significant genetic variability among cultivation sites. Results indicate that P. ginseng cultivating in Korea is monophyletic. The molecular analysis used in this study agreed on classification using morphological feature. These results suggest that molecular techniques used in this study could be useful for phylogenetic analysis of Araliaceae.

Selective Detection of Campylobacter sp. and Campylobacter jejuni in Meat Food by Polymerase Chain Reaction (PCR을 이용한 육류 내 Campylobacter sp. 및 Campylobacter jejuni의 분리 검출)

  • Joo, Jong-Won;Hong, Kyung-Pyo;Kim, Yong-Hui;Cho, Sang-Buem
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.5
    • /
    • pp.753-759
    • /
    • 2008
  • The principal objective of this study was to develop the optimum oligonucleotide primers for the simple detection of Campylobacter in food samples. In order to achieve this goal, a variety of oligonucleotide primers were designed via the modification of 16S rDNA, ceuE and mapA sequences of Campylobacter. Through the subsequent analysis of the specificity and sensitivity of primers, two types of oligonucleotide primers, CB4 and CJ1, were selected for Campylobacter genus-specific and C. jejuni species-specific primers, respectively. The detection limit was found to be $10^0{\sim}10^1$ cells per reaction with the prepared cell suspension, however, the sensitivity in the meat samples was less, at $10^1{\sim}10^2$. We suggested that PCR inhibitors such as hemoglobin or immunoglobulin in pork or beef influenced.

  • PDF

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Development of Strain-Specific Primers for Identification of Bifidobacterium bifidum BGN4

  • Youn, So Youn;Ji, Geun Eog;Han, Yoo Ri;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.909-915
    • /
    • 2017
  • Bifidobacterium bifidum BGN4 (BGN4) has many proven beneficial effects, including antiallergy and anticancer properties. It has been commercialized and used in several probiotic products, and thus strain-specific identification of this strain is very valuable for further strain-dependent physiological study. For this purpose, we developed novel multiplex polymerase chain reaction (PCR) primer sets for strain-specific detection of BGN4 in commercial products and fecal samples of animal models. The primer set was tested on seven strains of B. bifidum and 75 strains of the other Bifidobacterium species. The BGN4-specific regions were derived using megaBLAST against genome sequences of various B. bifidum databases and four sets of primers were designed. As a result, only BGN4 produced four PCR products simultaneously whereas the other strains did not. The PCR detection limit using BGN4-specific primer sets was $2.8{\times}10^1CFU/ml$ of BGN4. Those primer sets also detected and identified BGN4 in the probiotic products containing BNG4 and fecal samples from a BGN4-fed animal model with high specificity. Our results indicate that the PCR assay from this study is an efficient tool for the simple, rapid, and reliable identification of BGN4, for which probiotic strains are known.

Development of a Rapid Molecular Detection Marker for Colletotrichum species with AFLP

  • Eom, Seung-Hee;Kim, Kwon-Jong;Jung, Hee-Sun;Lee, Sang-Pyo;Lee, Youn-Su
    • Mycobiology
    • /
    • v.32 no.3
    • /
    • pp.123-127
    • /
    • 2004
  • Sweet persimmons have been increasingly cultivated in the southern part of Korea. However, anthracnose disease caused by Colletotrichum species is one of the major hindrances in cultivation and productions. In this study, we used polymerase chain reaction(PCR) to detect Colletotrichum species with the AFLP(amplified fragment length polymorphism) method. In AFLP, we used E3(5'-GACTGCGTACCAATTCTA-3') and M1(5'-GATGAGTCCTGAGTAACAG-3') primer combination and, as a result, 262 bp segment was observed in Colletotrichum species only. Specific PCR primers were designed from the sequence data and used to detect the presence of the fungus in genomic DNA isolated from symptomless sweet persimmon plants. Based on sequence data for specific segments, Co.B1(5'-GAGAGAGTAGAATTGCGCTG-3') and Co.B2(5'-CTACCATTCTTCTA GGTGGG-3') were designed to detect Colletotrichum species. The 220 bp segment was observed in Colletotrichum species only, but not in other fungal and bacterial isolates.

Development of SCAR Markers for the Discrimination of Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma based on the RAPD (RAPD 분석을 통한 대황(大黃)과 종대황(種大黃) 감별용 SCAR 유전자 마커 개발)

  • Moon, Byeong-Cheol;Lee, Young-Mi;Chun, Jin-Mi;Lee, A-Young;Yoon, Tae-Sook;Cheon, Myeong-Sook;Choo, Byung-Kil;Kim, Ho-Kyoung
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.115-120
    • /
    • 2009
  • Objectives : Due to the morphological similarity and frequent occurrence of intermediate forms as well as morphological variations of aerial part, the correct identification between Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma is very difficult. To develop a reliable method for correct identification and improving the quality standards of Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma, we analyzed RAPD and developed SCAR marker. Methods : To amplify target DNA at the genomic level, 32 Operon 10-mer random primers were applied with four Rheum species, R. officinale, R. palmatum, R. tanguticum and R. undulatum. The nucleotide sequences were determined and species-specific primers were prepared depending on the species-specific RAPD amplicons after subcloned into the pGEM-Teasy vector. To develop the SCAR markers, species-specific PCR amplification and multiplex-PCR were carried out using the single species-specific primer pairs and combinations of them, respectively. Results : We used RAPD analysis of four Rheum plant species to obtain several species-specific RAPD amplicons. From nucleotide sequences of these RAPD amplicons, we developed two SCAR markers that amplified 314 bp and 390 bp DNA fragments in only R. undulatum but not in R. officinale, R. palmatum, R. tanguticum and R. undulatum, for distinguishing Rhei Undulatai Rhizoma and Rhei Radix et Rhizoma. Furthermore, we established SCAR markers for the simultaneous discrimination of the three species within a single reaction by using multiplex-PCR. Conclusions : These genetic markers can be used for the efficient discrimination of plants species and commercial herbal medicines between Rhei Undulatai Rhizoma and Rhei Radix et Rhizoma, to ultimately prevent indiscriminate distribution and prescription of these herbal medicines.

Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction primers

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • The purpose of this study was to develop Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the 16S ribosomal RNA (16S rDNA) gene. The specificity of the primers was determined by conventional PCR using 29 strains of 27 oral bacterial species including P. mikwangii. The sensitivity of the primers was determined by qPCR using the purified genomic DNA of P. mikwangii KCOM $1628^T$ (40 ng to 4 fg). The data showed that the qPCR primers (RTB134-F4/RTB134-R4) could detect P. mikwangii strains exclusively and as little as 40 fg of the genomic DNA of P. mikwangii KCOM $1628^T$. These results suggest that the developed qPCR primer pair can be useful for detecting P. mikwangii in epidemiological studies of oral bacterial infectious diseases.

Restriction Fragment Length Ploymorphism of PCR Amplified Ribosomal DNA Among Korean Isolates of Phytophthora

  • Hong, Seung-Beom;Jee, Hyeong-Jin;Lee, Seung-Im;Go, Seung-Joo
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.228-235
    • /
    • 1999
  • Genetic diversity of ninety-five Korean isolates of Phytophthora was investigated on the basis of PCR-RFLP of ribosomal DNA. The isolates were previously identified as following fifteen species by mycological and cultural characteristics; P. boehmeriae, P. cactorum, P. cambivora, P. capsici, P. cinnamoni, P. citricola, P. citrophthora, P. cryptogea, P. drechsleri, P. erythroseptica, P. infestans, P. megasperma, P. nicotianae, P. palmivora and P. sojae. The regions of small subunit (SSU) and internal transcribed spacer (ITS) of rDNA were amplified with primer pair, NS1 and ITS4, by polymerase chain reaction (PCR) and digested with nine restriction enzymes. P. boehmeriae, P. cactorum, P. cambivora, P. capsici, P. cinnamomi, P. citricola, P. citrphthora, P. infestans, P. nicotianae and P. palmivora showed specific band patterns for each species. However, P. sojae and P. erythroseptica presented identical band patterns and P. cryptogea, P. drechsleri and P. megasperma were divided into six groups, which were not compatible with delineation of the species. A group originated from cucurbits showed distinct band patterns from other groups, but the other five groups were closely related within 96.0% similarity, forming one complex group. Consequently, Korean isolates of Phytophthora were divided into thirteen genetic groups and each group was readily differentiated by comparing digestion patterns of AvaII, HaeIII, MboI, HhaI and MspI. Therefore, PCR-RFLP of rDNA using the five enzymes can be used to differentiate or identify the Phytophthora species reported in Korea so far.

  • PDF

Molecular Biological Diagnosis of Meloidogyne Species Occurring in Korea

  • Oh, Hyung-Keun;Bae, Chang-Hwan;Kim, Man-Il;Wan, Xinlong;Oh, Seung-Han;Han, Yeon-Soo;Lee, Hyang-Burm;Kim, Ik-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.247-255
    • /
    • 2009
  • Root-knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria, and M. javanica are the most economically notorious nematode pests, causing serious damage to a variety of crops throughout the world. In this study, DNA sequence analyses were performed on the D3 expansion segment of the 28S gene in the ribosomal DNA in an effort to characterize genetic variations in the three Meloidogyne species obtained from Korea and four species from the United States. Further, PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) PCR and RAPD (Randomly Amplified Polymorphic DNA) were also utilized to develop methods for the accurate and rapid species identification of the root-knot nematode species. In the sequence analysis of the D3 expansion segment, only a few nucleotide sequence variations were detected among M. incognita, M. arenaria, and M, javanica, but not M. hapla. As a result of our haplotype analysis, haplotype 5 was shown to be common in M. arenaria, M. incognita, M. javanica, but not in the facultatively parthenogenetic species, M. hapla. PCR-RFLP analysis involving the amplification of the mitochondrial COII and large ribosomal RNA (lrRNA) regions yielded one distinct amplicon for M. hapla at 500 bp, thereby enabling us to distinguish M. hapla from M. incognita, M. arenaria, and M. javanica reproduced via obligate mitotic parthenogenesis. SCAR markers were used to successfully identify the four tested root-knot nematode species. Furthermore, newly attempted RAPD primers for some available root-knot nematodes also provided some species-specific amplification patterns that could also be used to distinguish among root-knot nematode species for quarantine purposes.