• Title/Summary/Keyword: Species complex

Search Result 1,127, Processing Time 0.024 seconds

The Taxonomy of Psilocybe fagicola-complex

  • Guzmanl Gaston;Jacobs James Q.;Florencia Ramirez Guillenl;Murrietal Dulce;Gandaral Etelvina
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.158-165
    • /
    • 2005
  • Psilocybe fagicola comprises a complex of more than eight species, six of them in Mexico, and all of them possessing a long pseudorhiza, a characteristic not listed by Heim and Cailleux in 1959 in the original description of the type species, but described by Guzman in 1978 and 1983. The description of Psilocybe fagicola s.s. is here emended to include the length of the cheilocystidia of(6-) 12-20 (-30) llm, as well as the absence or scarcity of pleurocystidia. Psilocybe xalapensis and P. wassoniorum are considered to be synonymous with P. fagicola s.s. However, Psilocybe banderillensis and P. herrerae from Mexico, P. columbiana from Colombia, and P. keralensis from India are considered to be valid species within this complex. Moreover, P. novoxalapensis and P. teofilae, both from Mexico, are described as new species. Length of spores, presence or absence of pleurocystidia and their variations, and type of cheilocystidia constitute the principal defining characteristics of the species. Setaceous hyphae at the base of the stipe, as well as caulocystidia, lack taxonomic value, as do other morphological characteristics, including pileipellis and subpileipellis. A key to the eight considered species is also presented within the paper.

Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes

  • Le Dinh Thao;Hyorim Choi;Donghun Kang;Anbazhagan Mageswari;Daseul Lee;Dong-Hyun Kim;In-Young Choi;Hyeon-Dong Shin;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.425-437
    • /
    • 2024
  • A large number of species in the genus Colletotrichum have been reported as causal agents of anthracnose on crops and wild plants in Korea. Many Colletotrichum isolates from the country preserved in the Korean Agricultural Culture Collection (KACC) were previously identified based on host plants and morphological characteristics, and it may lead to species misidentification. Thus, accurate fungal species identification using multilocus sequence analyses is essential for understanding disease epidemiology and disease management strategies. In this study, combined DNA sequence analyses of internal transcribed spacer, gapdh, chs-1, his3, act, tub2, and gs were applied to re-identify 27 Colletotrichum isolates in KACC. The phylogenetic analyses showed that the isolates resulted in 11 known species, they belong to the C. dematium species complex (C. hemerocallidis, C. jinshuiense, and C. spinaciae), the C. magnum complex (C. kaifengense and C. cf. ovatense), the C. orchidearum complex (C. cattleyicola, C. plurivorum, C. reniforme, and C. sojae) and the C. orbiculare complex (C. malvarum and C. orbiculare). Of them, C. cattleyicola, C. hemerocallidis, C. kaifengense, and C. reniforme were unrecorded species in Korea. In the view of host-fungus combinations, 10 combinations are newly reported in the world and 12 are new reports in Korea, although their pathogenicity on the host was not confirmed.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

A Bacterium Belonging to the Burkholderia cepacia Complex Associated with Pleurotus ostreatus

  • Yara Ricardo;Maccheroni Junior Walter;Horii Jorge;Azevedo Joao Lucio
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.263-268
    • /
    • 2006
  • Pleurotus ostreatus is a widely cultivated white-rot fungus. Owing to its considerable enzymatic versatility p. ostreatus has become the focus of increasing attention for its possible utility in biobleaching and bioremediation applications. Interactions between microorganisms can be an important factor in those processes. In this study, we describe the presence of a bacterial species associated with P. ostreatus strain G2. This bacterial species grew slowly (approximately 30 days) in the liquid and semi-solid media tested. When p. ostreatus was inoculated in solid media containing Tween 80 or Tween 20, bacterial microcolonies were detected proximal to the fungal colonies, and the relevant bacterium was identified via the analysis of a partial 16S rDNA sequence; it was determined to belong to the Burkholderia cepacia complex, but was not closely related to other fungus-isolated Burkholderiaceae. New specific primers were designed, and confirmed the presence of in vitro P. ostreatus cultures. This is the first time that a bacterial species belonging to the B. cepacia complex has been found associated with P. ostreatus.

Effects of Air Pollution on the Forest Vegetation Structure in the Vicinity of Sasang Industrial Complex in Korea (사상공단(沙上工團)의 대기오염(大氣汚染)이 주변(周邊) 산림(山林)의 식생구조(植生構造)에 미치는 영향(影響))

  • Kim, Jeom Soo;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The object of this study was to examine the effects of air pollution on forest vegetation structure in the vinicity of Sasang industrial complex in Korea. Forest vegetation structure was investigated at 19 sample plots surrounding industrial complex and at one site away from industrial complex as a control. The results obtained were as follows; 1. For analysis of vegetation structure, upperstory of forests was mostly consisted of Pinus thunbergii, and partly of Alnus firma and Robinia pseudoacacia. In midstory, major components were Pinus thunbergii, Robinia pseudoacacia, Rhus trichocarpa, Rhus chinensis and Styrax japonica, In lower story, Pinus thunbergii was a minor component, while Robinia pseudoacacia, Quercus serrata, Rhus trichocarpa. and Rhododendron yedoense var. poukhanense which were known to be resistant to air pollution were found in large number. Especially, importance percentage of Robinia pseudoacacia was high, while that of Rhododendron mucronulatum was low in surrounding industrial complex. 2. For woody plants, number of species, species diversity and similarity index in industrial complex, were not significantly different from those in control plot. 3. For herbs, Oplismenus undulatifolius appeared in large number in most plots. The $SDR_3$ of Miscanthus sinensis, Calamagrostis arundinacea, Paederia scandens, Spodiopogon cotulifer and Carex humilis were high, but that of Aster scaber, Saussurea seoulensis, Solidago virgaaurea var. asiatica and Prunella vulgaris var. lilacina were low in the vicinity of industrial complex. 4. Number of herb species decreased to below 10 species at surrounding industrial complex as compared to 20 species in the control plot. In addition species diversity, and similarity index in the industrial complex were lower than those in control plot. It may be concluded that Pinus thunbergii forests in industrial complex consists of tree species resistant to air pollution, and that composition of woody vegetation in industrial complex was not much different from control plot, while composition of herbs was already quite different between the two plots. Forest vegetation structure, therefore, may change with time due to air pollution in the industrial complex.

  • PDF

Selection of Tolerant Species among Korean Major Woody Plants to Restore Yeocheon Industrial Complex Area (여천공업단지의 복원을 위한 우리나라 주요 목본식물 중 내성종의 선발)

  • 유영한;이창석;김준호
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.337-344
    • /
    • 1998
  • To select tolerant species among the Korean major woody plants for restoring disturbed ecosystems by air and soil pollution, we transplanted the seedlings of 56 species in control and polluted sites within Yeocheon industrial complex area, and compared their aboveground growth characteristics such as total branch length, total leaf weight, and maximum photozynthetic rate. Tolerant species growting better in polluted site than in control site was Quercus variabilis, Pinus thunbergii, Q. aliena, P. densiflora, Styrax japonica, Alnus firma, Celtis sinensis, Elaeagnus umbellata, Q. serrata, japonica, Sorbus alnifolia, and Q. acutissimia in local tree occuring within polluted area group (80%), Ailanthus altissima in street tree group (20%), Populus tomentiglandulosa and A. hirsuta var. sibirica in fast growing tree group (50%), Acer ginala and Abies holophylla in late successional tree group (20%), Betulla platyphylla var. japonica, Acer truncatum, A. palmatum, Syringa dilatata, and Rosa multifora in garden tree group (38%), and Q. rubura, and Robinia pseudoacacia in foreign restoring tree group (20%), respectively. The remaining plant species, 37 species (57% of total species), were classified into sensitive species to pollution. Those tolerant species can be utilized for restoration of the degraded ecosystem in this polluted area.

  • PDF

New Report of Three Unrecorded Species in Trichoderma harzianum Species Complex in Korea

  • Jang, Seokyoon;Kwon, Sun Lul;Lee, Hanbyul;Jang, Yeongseon;Park, Myung Soo;Lim, Young Woon;Kim, Changmu;Kim, Jae-Jin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • The genus Trichoderma (Hypocreaceae, Ascomycota) consists of globally distributed fungi. Among them, T. harzianum, one of the most commonly collected Trichoderma species, had been known as a polyphyletic or aggregate species. However, a total of 19 species were determined from the polyphyletic groups of T. harzianum. Thus, we explored Korean "T. harzianum" specimens that were collected in 2013-2014. These specimens were re-examined based on a recent study with translate elongation factor 1-alpha ($EF1{\alpha}$) sequences to reveal cryptic Trichoderma species in Korea. As a result, four different species, T. afroharzianum, T. atrobruneum, T. pyramidale, and T. harzianum, were identified. Except T. harzianum, the other three species have not been reported in Korea. In this work, we describe these species and provide figures.

Unusual Mitochondrial DNA Polymorphism of the Blue Mussel (Mytilus edulis) Species Complex on the Southern Coast of Korea

  • Iksoo Kim;Byung-Yoon Min;Myung-Hee Yoon;Myong-Suk Yoo;Doh-Hoon Kim
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • Mitochondrial DNA (mtDNA) from 54 specimens of the blue mussel (Mytilus edulis) species complex sampled from the southern coast of Korea was assayed for polymorphism with a portion of the COIII gene (336 bp). Fifteen haplotypes were found. PAUP, one-step networks, and PHYLIP analyses revealed the presence of two clearly differentiated mitochondrial clades (termed clades B and E), separated by 3.6% of minimum sequence divergence. The distribution pattern of the species appears to be consistent with category II of the phylogeographic pattern sensu (Avise et al., 1987): the presence of two discontinuous and distinct mtDNA genotypes in the same geographic region. This unusual mitochondrial polymorphism was explained by the presence of the Mediterranean species, M. galloprovincialis, possessing mtDNA of both M. galloprovincialis and M. edulis.

  • PDF

Ultrastructure and molecular phylogeny of Mesodinium annulatum sp. nov. (Mesodiniidae, Cyclotrichiida), a new member of the Mesodinium rubrum / Mesodinium major complex

  • Seung Won Nam;Miran Kim;Seok Won Jang;Myung Gil Park;Wonho Yih;Hyung Seop Kim;Woongghi Shin
    • ALGAE
    • /
    • v.39 no.3
    • /
    • pp.129-147
    • /
    • 2024
  • The species complex Mesodinium rubrum / major, common red tide-forming ciliates, has been intensively studied with regards to its ecological roles in global marine ecosystems and the evolutionary aspects of its "stolen" organelles (kleptoplasty and karyoklepty). Nonetheless, the taxonomy of the species within the complex remains unclear. A new marine Mesodinium species isolated from Gomso Bay, Korea, was cultivated under mixotrophic conditions by providing Teleaulax amphioxeia, a red cryptomonad, as prey. Cells of the new isolate consisted of two portions separated by two types of polykinetids. The number of polykinetid associated with the equatorial ciliary belt was approximately 38, and each consisting of two rows of up to 18 alternating kinetosomes each. There was an equal number of cirral polykinetids, each consisting of 16 kinetosomes organized into four longitudinal rows having five, five, four, and two kinetosomes, respectively (in anti-clockwise direction). The two kinds of kinetids and their associated microtubules and fibers were structurally similar to those of M. rubrum from Denmark. However, the Korean Mesodinium species was characterized by its broad posterior portion, 20-22 tentacles, and a cytopharyngeal annulus. Molecular phylogeny based on internal transcribed spacer sequences placed the Korean isolate in clade B of the M. rubrum / major species complex, rather than in clade F representing the neotype of M. rubrum. Based on morphological, ultrastructural, and molecular data, we propose the Korean strain as a new marine Mesodinium species, M. annulatum.

Molecular Variation and Distribution of Anopheles fluviatilis (Diptera: Culicidae) Complex in Iran

  • Naddaf, Saied Reza;Razavi, Mohammad Reza;Bahramali, Golnaz
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.231-236
    • /
    • 2010
  • Anopheles fluviatilis James (Oiptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 288-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 288-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.