• Title/Summary/Keyword: Speciation analysis

Search Result 92, Processing Time 0.02 seconds

Risk Analysis of Inorganic Arsenic in Foods (식품 중 무기비소의 위해 분석)

  • Yang, Seung-Hyun;Park, Ji-Su;Cho, Min-Ja;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.227-249
    • /
    • 2016
  • Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has been withdrawn, while the EFSA panel suggested $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg\;b.w./day$ for cancers of the lung, skin and bladder, as well as skin lesions. Rice, seaweed and beverages are known as food being rich in inorganic arsenic. As(III) is the major form of inorganic arsenic in rice and anaerobic paddy soils, while most of inorganic arsenic in seaweed is present as As(V). The inorganic arsenic in food was extracted with solvent such as distilled water, methanol, nitric acid and so on in heat-assisted condition or at room temperature. Arsenic speciation analysis was based on ion-exchange chromatography and high-performance liquid chromatography equipped with atomic absorption spectrometry and inductively coupled plasma mass spectrometry. However, there has been no harmonized and standardized method for inorganic arsenic analysis internationally. The inorganic arsenic exposure from food has been estimated to range of $0.13{\sim}0.7{\mu}g/kg$ bw/day for European, American and Australian, and $0.22{\sim}5{\mu}g/kg$ bw/day for Asian. The maximum level (ML) for inorganic arsenic in food has established by EU, China, Australia and New Zealand, but are under review in Korea. Until now, several studies have conducted for reduction of inorganic arsenic in food. Inorganic arsenic levels in rice and seaweed were reduced by more polishing and washing, boiling and washing, respectively. Further research for international harmonization of analytical method, monitoring and risk assessment will be needed to strengthen safety management of inorganic arsenic of foods in Korea.

New Analytical Method to Identify Chromium Species, Cr(III) and Cr(VI), and Characteristic Distribution of Chromium Species in the Han River (한강수계해서의 크롬(III,VI) 종(species) 분포 및 분석방법 정립)

  • Jeong, Gwan-Jo;Kim, Dok-Chan;Park, Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.590-598
    • /
    • 2005
  • An adequate method to identify chromium separation, Cr(III) and Cr(VI), in water samples were studied by using High Performance Liquid Chromatography(HPLC) coupled with Inductively Coupled Plasma Mass Spectometer(ICP-MS) equipped with Dynamic Reaction Cell(DRC). The characteristic distribution of Cr(III) and Cr(VI) in the raw water taken at the six water intake stations in Seoul, was analyzed by the method developed by the authors. The chromium species separated by HPLC was isocratically conducted by using tetrabutylammonium phosphate monobasic(1.0 mM TBAP), ethylenediaminetetraacetic acid(0.6 mM EDTA) and 2% v/v methanol as the mobile phase. 5% v/v methanol was used as flushing solvent. A reactive ammonia($NH_3$) gas was used to eliminate the potential interference of $ArC^+$. Several Parameters such as solvent ratio, pH, flow rate and sample injection volume were optimized for the successful separation and reproducibility. Although it has been reported thai the separation sensitivity of Cr(III) is superior to that of Cr(VI), the authors observed Cr(VI) was more sensitive than Cr(III) when ammonia($NH_3$) gas was used as the reaction gas. It took less than 3 minutes to analyze chromium species with this method and the estimated detection limits were $0.061\;{\mu}g/L$ for Cr(III) and $0.052\;{\mu}g/L$, for Cr(VI). According to the results from the analysis on chromium species in the raw water of the six intake stations, the concentrations of Cr(III) ranged from 0.048 to $0.064\;{\mu}g/L$(ave. $0.054\;{\mu}g/L$) while that of Cr(VI) ranged from 0.014 to $0.023\;{\mu}g/L$(ave. $0.019\;{\mu}g/L$). Recovery ratio was very high($90.1{\sim}94.1%$). There were two or three times more Cr(III) than Cr(VI) in the raw water.