• Title/Summary/Keyword: Special-purpose Vehicle

Search Result 64, Processing Time 0.028 seconds

A study on improving the performance of special ambulances (특수구급차 성능 개선을 위한 조사 연구)

  • Yoon, Byoung-Gil;Yang, Hyun-Mo;Kim, Gyoung-Yong
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • Purpose: This study aimed to provide basic data for the improvement of the standards related to the performance improvement of the firefighting equipment standards for special ambulances. Methods: Among the domestic firefighting equipment standards, the special ambulance standard was compared with the NFPA 1917 standard for the United States automobile ambulance 2019 and European Union European standard EN 1789 medical vehicle and its equipment, a road ambulance. Results: Anti-skid performance based on indoor noise standards, performance standards for interior lights, seat belt warning device, child car seat fixing device, safety handle, auxiliary footrest, and flooring materials should be supplemented. Conclusion: It is necessary to strengthen the production and performance standards for improvement to a level corresponding to the national standards, such as the United States and European Union.

A Study on Electric Power Supply Analysis of Urban MAGLEV Vehicle (도시형 자기부상열차의 전력특성 분석에 관한 연구)

  • Ahn, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.157-161
    • /
    • 2008
  • The main purpose of this study is to analysis of urban MAGLEV vehicle for the Incheon International Airport Maglev railway, in the process of construction at the moment, in Korea. For analysis of urban MAGLEV, we have measurement power a special quality of MAGLEV operating the center science museum in Deajeon. 1) The power property related to urban MAGLEV vehicle demand on the Incheon International Airport Maglev railway track and substation capacity compared to the result given. 2) The optimum design of substation is determined based on the analysis. 3) The equipments of substation are determined based on the analysis. The result of measurement performance, therefore, enables us to reflect the good property, to the power supply design. The result of research performance, therefore, enables us to reflect the Power Supply System design for the stabilized and economized MAGLEV operation.

  • PDF

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

A Study on the Acoustical and Vibrational Characteristics of a Passenger Car(III) -Reduction of Interior Noise of Vehicle Compartment Model by Using Coupling Coefficient and Panel Contribution Factor- (승용차의 차실음향 및 차체진동에 관한 연구 (III) -연성계수 및 패널 기여도를 이용한 차실모델의 실내소음 저감-)

  • 김석현;이장무;김중희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • In the previous study, car interior noise was analyzed using structural acoustic mode coupling coefficients and noise response in vehicle compartment model was simulated by the developed special purpose program. As a continued study, this paper presents a practical scheme for the interior noise reduction of a passenger car. Noisy panels on the vehicle compartment wall could be easily identified by the analysis using mode coupling coefficients. Numerical simulation for noise reduction was carried out on a simplified vehicle compartment model by using panel contribution factor and the noise reduction effect was verified by the structural modification test using Steel Skin (damping sheet).

Dynamic Performance Analysis for 6WD/6WS Armored Vehicles (6WD/6WS 군용차량의 동역학적 성능해석)

  • 홍재희;김준영;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.155-166
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation tool using the MATLAB /SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

  • PDF

A Study on the Acoustic Power Estimation in the Blower for a Vehicle Air-handling System (승용차 공조계용 블로우어의 음향출력 평가에 관한 연구)

  • Kim, Seock-Hyun;Yoo, Sung-Woo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.87-93
    • /
    • 1997
  • A Special purpose program, based on the dimensional analysis, was developed to estimate the wide band turbulent noise in the blower of vehicle airhandling system. Acoustic power level was measured at 4 rating points around the operating condition. The experiment was performed on the reference blower model using international standard chamber, which could measure acoustic power according to the air-handling performance. Analytical model of the blower noise was determined by the measured data. Using the analytical acoustic model, it was possible to estimated the effect by the change of the operating condition, such as flow rate, static pressure and wheel rotating speed, furthermore, the diameter and the width of blower.

  • PDF

FATIGUE LIFE PREDICTION OF THE PARTS USED IN THE SUSPENSION SYSTEM FOR TRUCKS (화물차량용 현가계 부품의 피로 수명 예측)

  • Jun, Kab-Jin;Park, Tae-Won;Lee, Su-Ho;Yoon, Ji-Won;Kwon, Soon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1051-1056
    • /
    • 2007
  • The air suspension system is widely used in commercial vehicles such as buses or special purpose trucks because it improves ride better than any other types of suspension. Since the durability of vehicle parts is directly related to the safety, the evaluation of the durability at the design stage is necessary. In this research, the fatigue life of the air suspension frame for trucks is predicted by the modal stress recovery(MSR) method. Using the process proposed in this research, the fatigue life of vehicle parts can be predicted efficiently at the design stage.

  • PDF

Application and Evaluation of Signal Metering at Special Roundabouts (특수유형 회전교차로 신호미터링 적용 및 평가)

  • Yang, Taeyang;Lee, YoungIhn;Yoon, Taekwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.96-109
    • /
    • 2019
  • Roundabouts are actively installed to reduce unnecessary congestion and reduce traffic accidents. However, it is difficult to apply more than 450 cars per, hour. In addition, there is a downside to the concentration of delays in certain directions depending on traffic conditions. To compensate for these shortcomings, signal metering was introduced. Signal metering is a technique that gives red signals to adjacent left traffic flow in the event of a delay in a particular direction. The purpose of this study is comparing the effect of signal metering in conventional and special types (turbo roundabout, flower roundabout) of roundabout. VISSIM API is used for analysis. The analysis result show that only conventional roundabout signal metering algorithm reduce delay time per vehicle. As the result of the turbo roundabout and flower roundabout signal metering algorithm increase delay time per vehicle, signal metering algorithm can be applied in conventional roundabout.

Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle (특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가)

  • Bae, Myungho;Lee, Taeyoung;Cho, Yonsang
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.