• Title/Summary/Keyword: Speaker representation

Search Result 34, Processing Time 0.022 seconds

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Proposal of speaker change detection system considering speaker overlap (화자 겹침을 고려한 화자 전환 검출 시스템 제안)

  • Park, Jisu;Yun, Young-Sun;Cha, Shin;Park, Jeon Gue
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.466-472
    • /
    • 2021
  • Speaker Change Detection (SCD) refers to finding the moment when the main speaker changes from one person to the next in a speech conversation. In speaker change detection, difficulties arise due to overlapping speakers, inaccuracy in the information labeling, and data imbalance. To solve these problems, TIMIT corpus widely used in speech recognition have been concatenated artificially to obtain a sufficient amount of training data, and the detection of changing speaker has performed after identifying overlapping speakers. In this paper, we propose an speaker change detection system that considers the speaker overlapping. We evaluated and verified the performance using various approaches. As a result, a detection system similar to the X-Vector structure was proposed to remove the speaker overlapping region, while the Bi-LSTM method was selected to model the speaker change system. The experimental results show a relative performance improvement of 4.6 % and 13.8 % respectively, compared to the baseline system. Additionally, we determined that a robust speaker change detection system can be built by conducting related studies based on the experimental results, taking into consideration text and speaker information.

SVM Based Speaker Verification Using Sparse Maximum A Posteriori Adaptation

  • Kim, Younggwan;Roh, Jaeyoung;Kim, Hoirin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.277-281
    • /
    • 2013
  • Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.

  • PDF

A Study on Speaker Identification Using Hybrid Neural Network (하이브리드 신경회로망을 이용한 화자인식에 관한 연구)

  • Shin, Chung-Ho;Shin, Dea-Kyu;Lee, Jea-Hyuk;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.600-602
    • /
    • 1997
  • In this study, a hybrid neural net consisting of an Adaptive LVQ(ALVQ) algorithm and MLP is proposed to perform speaker identification task. ALVQ is a new learning procedure using adaptively feature vector sequence instead of only one feature vector in training codebooks initialized by LBG algorithm and the optimization criterion of this method is consistent with the speaker classification decision rule. ALVQ aims at providing a compressed, geometrically consistent data representation. It is fit to cover irregular data distributions and computes the distance of the input vector sequence from its nodes. On the other hand, MLP aim at a data representation to fit to discriminate patterns belonging to different classes. It has been shown that MLP nets can approximate Bayesian "optimal" classifiers with high precision, and their output values can be related a-posteriori class probabilities. The different characteristics of these neural models make it possible to devise hybrid neural net systems, consisting of classification modules based on these two different philosophies. The proposed method is compared with LBG algorithm, LVQ algorithm and MLP for performance.

  • PDF

Speaker Identification Using Greedy Kernel PCA (Greedy Kernel PCA를 이용한 화자식별)

  • Kim, Min-Seok;Yang, Il-Ho;Yu, Ha-Jin
    • MALSORI
    • /
    • no.66
    • /
    • pp.105-116
    • /
    • 2008
  • In this research, we propose a speaker identification system using a kernel method which is expected to model the non-linearity of speech features well. We have been using principal component analysis (PCA) successfully, and extended to kernel PCA, which is used for many pattern recognition tasks such as face recognition. However, we cannot use kernel PCA for speaker identification directly because the storage required for the kernel matrix grows quadratically, and the computational cost grows linearly (computing eigenvector of $l{\times}l$ matrix) with the number of training vectors I. Therefore, we use greedy kernel PCA which can approximate kernel PCA with small representation error. In the experiments, we compare the accuracy of the greedy kernel PCA with the baseline Gaussian mixture models using MFCCs and PCA. As the results with limited enrollment data show, the greedy kernel PCA outperforms conventional methods.

  • PDF

A study on application of the statistic model about an utterance of the speaker (화자의 발음에 대한 통계적 모델의 적용에 관한 연구)

  • Kim, Dae-Sik;Bae, Myong-Jin;Yoon, Jae-Gang
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.25-28
    • /
    • 1988
  • A speech that play a part of important mediation in the man's conversation is the sound of representation to man's emotion and thought, then voice sound could be verified and identified a speaker's speech by individual property. This study indicates as distribution of pitch in searching for sample number of each pitch with eye in the sound waveform of speaker. We propose the algorithm that judge speaker's emotion state, personality, regional group, age, sex distinction, e.t.c., according to the deviation degree.

  • PDF

Reduction of Dimension of HMM parameters in MLLR Framework for Speaker Adaptation (화자적응시스템을 위한 MLLR 알고리즘 연산량 감소)

  • Kim Ji Un;Jeong Jae Ho
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.123-126
    • /
    • 2003
  • We discuss how to reduce the number of inverse matrix and its dimensions requested in MLLR framework for speaker adaptation. To find a smaller set of variables with less redundancy, we employ PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible. The amount of additional computation when PCA or ICA is applied is as small as it can be disregarded. The dimension of HMM parameters is reduced to about 1/3 ~ 2/7 dimensions of SI(speaker independent) model parameter with which speech recognition system represents word recognition rate as much as ordinary MLLR framework. If dimension of SI model parameter is n, the amount of computation of inverse matrix in MLLR is proportioned to O($n^4$). So, compared with ordinary MLLR, the amount of total computation requested in speaker adaptation is reduced to about 1/80~1/150.

  • PDF

Chang-rae Lee and Diasporic Romance (이창래의 디아스포라 로맨스)

  • Kim, Jungha
    • American Studies
    • /
    • v.42 no.1
    • /
    • pp.1-22
    • /
    • 2019
  • This paper suggests a genealogy of romance in Chang-rae Lee's Native Speaker, A Gesture Life, and The Surrendered. A flexible textual performance and literary strategy spanning issues of beauty and love, romance in Lee registers the writer's distinctive diasporic negotiation with sites of departure and arrival, in particular with traumatic histories of the m/other country. Native Speaker resolves the crisis of public immigrant love within the compromise in the domestic melodrama. As Lee turns to the scenes of historical trauma in the twentieth century transpacific, romance becomes a key strategy through which his aestheticized framing and deframing of comfort woman is performed and the Korean War finds odd comfort in the aesthetic energy of perverse care in Italy. Through the dehistoricizing movement outside of the historical into the realm of myth and nostalgia, Lee's diasporic romance breaks away from mandates of representation and works within the excess of mistranslation.

One-shot multi-speaker text-to-speech using RawNet3 speaker representation (RawNet3를 통해 추출한 화자 특성 기반 원샷 다화자 음성합성 시스템)

  • Sohee Han;Jisub Um;Hoirin Kim
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • Recent advances in text-to-speech (TTS) technology have significantly improved the quality of synthesized speech, reaching a level where it can closely imitate natural human speech. Especially, TTS models offering various voice characteristics and personalized speech, are widely utilized in fields such as artificial intelligence (AI) tutors, advertising, and video dubbing. Accordingly, in this paper, we propose a one-shot multi-speaker TTS system that can ensure acoustic diversity and synthesize personalized voice by generating speech using unseen target speakers' utterances. The proposed model integrates a speaker encoder into a TTS model consisting of the FastSpeech2 acoustic model and the HiFi-GAN vocoder. The speaker encoder, based on the pre-trained RawNet3, extracts speaker-specific voice features. Furthermore, the proposed approach not only includes an English one-shot multi-speaker TTS but also introduces a Korean one-shot multi-speaker TTS. We evaluate naturalness and speaker similarity of the generated speech using objective and subjective metrics. In the subjective evaluation, the proposed Korean one-shot multi-speaker TTS obtained naturalness mean opinion score (NMOS) of 3.36 and similarity MOS (SMOS) of 3.16. The objective evaluation of the proposed English and Korean one-shot multi-speaker TTS showed a prediction MOS (P-MOS) of 2.54 and 3.74, respectively. These results indicate that the performance of our proposed model is improved over the baseline models in terms of both naturalness and speaker similarity.

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.