• Title/Summary/Keyword: Spatiotemporal

Search Result 603, Processing Time 0.021 seconds

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

The relation of Creating Actor's Aura and Conscious Liminality of Acting - a conceptual understanding as a searching process for materiality - (연기의 기술적, 의식적 리미널리티(liminality)와 배우의 아우라의 상관성 - 물질성 탐색의 한 과정으로서의 개념적 이해 -)

  • Kwon, Kyoung-Hee
    • Journal of Korean Theatre Studies Association
    • /
    • no.53
    • /
    • pp.31-56
    • /
    • 2014
  • If we define theatre as an infinite tower piled up by smoke, the strata of the organic composition of an actor's/actress' body-mind-spirit, may not only be complicatedly worked out, but it seems to belong to a non-scientific realm. However and at the same time, it is also true that the audience is eager to witness a certain kind of specific vitality from the actor/actress on stage. Of course the vitality is hard to be prescribed. Simply we call it a texture of energy, nuance of existence, or much simpler, an actor's/actress' 'aura'. That is, the existential nuance of the actor/actress. The nuance, which is surging from the actor's/actress' authentic presence, ultimately comes out of, not the circumstantial interpretation of the production but the power of its integration. We can find from the works of Meyerhold, Grotowsky and Barba the theatrical fact that the actor's aura can be obtained by a kind of artificiality rather than innate characteristics of existence. These directors commonly regard theatre as the actor's/actress' theatre. Respectively choosing his own specific methods of expression, they unexpectedly meet in a same spot in which actor's/actress' theatre can be realized by the rediscovery of the actor's/actress's body-form. In other words, their approaching methods to theatre look alike, at least in that abandoning reserving any natural, unconscious, economic body-form of an actor/actress, they rather try to discover a certain kind of 'technical' body-form. The form which is totally non/un-conscious, unfamiliar and non-economical. Their research process explores an ideal body-form, and this thesis focuses on this point. For this work, I bring the notion of 'liminality' that connotes the praxis for essential presence of the actor/actress as well as the incubating time and space nacessary for his/her rebirth. And for developing this work, I ask: Could not the actor's/actress' consciousness and the spatiotemporal dimensions (s)he meets, be possibly defined as the core of liminality, only in case that (s)he requires them in the process of, either exploring the unfamiliar body or familiarising with the unfamiliar body-form? As I mentioned above, the three frontiers' theatrical journey is similar in part. For example, three all start from the actor's/actress' consciousness and then go through the body enlarged with it. Then they continue their journey, but different from one another. Meyerhold still uses the conscious body. But now he transforms it into a kind of mobilized sculptures. In comparison with Meyerhold's use of the consciousness, Grotowsky puts his emphasis on an autonomous body which, if necessary, cast away even the innate consciousness. Likewise, to Barba, theatre always starts from the actor/actress who has already taken off all kinds of conventions. (Conventions should be re-designed!) The actor/actress therefore recreates him/herself as his/her body-mind wears a new, unfamiliar, readjusted form and vitality. And then this restructured body-mind may unceasingly aim at exploring its vitalized 'positive organism', that is the waves of self-centering energy, an existential nuance, and an authentic (or maybe behavioral) expressiveness. Now it seems clear that the liminal process for the frontiers' theatrical journey could be equalized as a profound process of self-penetration, self-transformation, and self-realization. This thesis explores the mystic realm of liminality.

A Suggestion for Spatiotemporal Analysis Model of Complaints on Officially Assessed Land Price by Big Data Mining (빅데이터 마이닝에 의한 공시지가 민원의 시공간적 분석모델 제시)

  • Cho, Tae In;Choi, Byoung Gil;Na, Young Woo;Moon, Young Seob;Kim, Se Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.79-98
    • /
    • 2018
  • The purpose of this study is to suggest a model analysing spatio-temporal characteristics of the civil complaints for the officially assessed land price based on big data mining. Specifically, in this study, the underlying reasons for the civil complaints were found from the spatio-temporal perspectives, rather than the institutional factors, and a model was suggested monitoring a trend of the occurrence of such complaints. The official documents of 6,481 civil complaints for the officially assessed land price in the district of Jung-gu of Incheon Metropolitan City over the period from 2006 to 2015 along with their temporal and spatial poperties were collected and used for the analysis. Frequencies of major key words were examined by using a text mining method. Correlations among mafor key words were studied through the social network analysis. By calculating term frequency(TF) and term frequency-inverse document frequency(TF-IDF), which correspond to the weighted value of key words, I identified the major key words for the occurrence of the civil complaint for the officially assessed land price. Then the spatio-temporal characteristics of the civil complaints were examined by analysing hot spot based on the statistics of Getis-Ord $Gi^*$. It was found that the characteristic of civil complaints for the officially assessed land price were changing, forming a cluster that is linked spatio-temporally. Using text mining and social network analysis method, we could find out that the occurrence reason of civil complaints for the officially assessed land price could be identified quantitatively based on natural language. TF and TF-IDF, the weighted averages of key words, can be used as main explanatory variables to analyze spatio-temporal characteristics of civil complaints for the officially assessed land price since these statistics are different over time across different regions.

Evaluation of Land Use Change Impact on Hydrology and Water Quality Health in Geum River Basin (금강유역의 토지이용 변화가 수문·수질 건전성에 미치는 영향 평가)

  • LEE, Ji-Wan;PARK, Jong-Yoon;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.82-96
    • /
    • 2019
  • This study evaluated the status of watershed health in Geum River Basin by SWAT (Soil and Water Assessment Tool) hydrology and water quality. The watershed healthiness from watershed hydrology and stream water quality was calculated using multivariate normal distribution from 0(poor) to 1(good). Before evaluation of watershed healthiness, the SWAT calibration for 11 years(2005~2015) of streamflow(Q) at 5 locations with 0.50~0.77 average Nash-Sutcliffe model efficiency and suspended solid (SS), total nitrogen(T-N), and total phosphorus(T-P) at 3 locations with 0.67~0.94, 0.59~0.79, and 0.61~0.79 determination coefficient($R^2$) respectively. For 24 years (1985~2008) the spatiotemporal change of watershed healthiness was analyzed with calibarted SWAT and 5 land use data of 1985, 1990, 1995, 2000, and 2008. The 2008 SWAT results showed that the surface runoff increased by 40.6%, soil moisture and baseflow decreased by 6.8% and 3.0% respectively compared to 1985 reference year. The stream water quality of SS, T-N, and T-P increased by 29.2%, 9.3%, and 16.7% respectively by land development and agricultural activity. Based on the 1985 year land use condition. the 2008 watershed healthiness of hydrology and stream water quality decreased from 1 to 0.94 and 0.69 respectively. The results of this study be able to detect changes in watershed environment due to human activity compared to past natural conditions.

Trends in QA/QC of Phytoplankton Data for Marine Ecosystem Monitoring (해양생태계 모니터링을 위한 식물플랑크톤 자료의 정도 관리 동향)

  • YIH, WONHO;PARK, JONG WOO;SEONG, KYEONG AH;PARK, JONG-GYU;YOO, YEONG DU;KIM, HYUNG SEOP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.220-237
    • /
    • 2021
  • Since the functional importance of marine phytoplankton was firstly advocated from early 1880s massive data on the species composition and abundance were produced by classical microscopic observation and the advanced auto-imaging technologies. Recently, pigment composition resulted from direct chemical analysis of phytoplankton samples or indirect remote sensing could be used for the group-specific quantification, which leads us to more diversified data production methods and for more improved spatiotemporal accessibilities to the target data-gathering points. In quite a few cases of many long-term marine ecosystem monitoring programs the phytoplankton species composition and abundance was included as a basic monitoring item. The phytoplankton data could be utilized as a crucial evidence for the long-term change in phytoplankton community structure and ecological functioning at the monitoring stations. Usability of the phytoplankton data sometimes is restricted by the differences in data producers throughout the whole monitoring period. Methods for sample treatments, analyses, and species identification of the phytoplankton species could be inconsistent among the different data producers and the monitoring years. In-depth study to determine the precise quantitative values of the phytoplankton species composition and abundance might be begun by Victor Hensen in late 1880s. International discussion on the quality assurance of the marine phytoplankton data began in 1969 by the SCOR Working Group 33 of ICSU. Final report of the Working group in 1974 (UNESCO Technical Papers in Marine Science 18) was later revised and published as the UNESCO Monographs on oceanographic methodology 6. The BEQUALM project, the former body of IPI (International Phytoplankton Intercomparison) for marine phytoplankton data QA/QC under ISO standard, was initiated in late 1990. The IPI is promoting international collaboration for all the participating countries to apply the QA/QC standard established from the 20 years long experience and practices. In Korea, however, such a QA/QC standard for marine phytoplankton species composition and abundance data is not well established by law, whereas that for marine chemical data from measurements and analysis has been already set up and managed. The first priority might be to establish a QA/QC standard system for species composition and abundance data of marine phytoplankton, then to be extended to other functional groups at the higher consumer level of marine food webs.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula (한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석)

  • Yeji Hwang;Jaemin Kim;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.169-181
    • /
    • 2023
  • Recently, in order to reduce carbon dioxide (CO2) emissions, which is the main cause of global warming, Korea has declared carbon emission reduction targets and carbon neutral. Accurate assessment of regional emissions and atmospheric CO2 concentrations is becoming important as a result. In this study, we identified the spatiotemporal differences between satellite-based atmospheric CO2 concentration and CO2 emissions for the Korean Peninsula region using column-averaged CO2 dry-air mole fraction from the Orbiting Carbon Observatory-2 and emission inventory. And we explained these differences using solar-induced fluorescence (SIF), a photosynthetic reaction index according to vegetation growth. The Greenhouse Gas Inventory and Research Center (GIR) and Emissions Database for Global Atmospheric Research (EDGAR) emissions continued to increase in Korea from 2014 to 2018, but the satellite-based atmospheric CO2 concentration decreased in 2018, respectively. Regionally, GIR and EDGAR emissions increased in 2018 in Gyeonggi-do and Chungcheongbuk-do, but satellite-based CO2 concentrations decreased for the corresponding years. In addition, the correlation analysis between emissions and satellite-based CO2 concentration showed a low correlation of 0.22 (GIR) and 0.16 (EDGAR) in Seoul and Gangwon-do. Atmospheric CO2 concentrations showed a different correlation with SIF by region. In the CO2-SIF correlation analysis for the growing season (May to September), Seoul and Gyeonggi-do showed a negative correlation coefficient of -0.26, Chungcheongbuk-do and Gangwon-do showed a positive correlation coefficient of 0.46. Therefore, it can be suggested that consideration of the CO2 absorption process is necessary for analyzing the relationship between the atmospheric CO2 concentration and emission inventory.