• Title/Summary/Keyword: Spatio-temporal variation

Search Result 130, Processing Time 0.022 seconds

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

Saptio-temporal Deinterlacing Based on Edge Direction and Spatio-temporal Brightness Variations (에지 방향성과 시공간 밝기 변화율을 고려한 시공간 De-Interlacing)

  • Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 2011
  • In this paper, we propose an efficient deinterlacing algorithm which interpolates the missing scan lines by weighted summing of the intra and the inter interpolation pixels according to the spatio-temporal variation. In the spatial interpolation, we adopt a new edge based spatial interpolation method which includes edge directional refinement. The conventional edge dependent interpolation algorithms are very sensitive to noise due to the failure of estimating edge direction. In order to exactly detect edge direction, our method first finds the edge directions around the pixel to be interpolated and then refines edge direction of the pixel using weighted maximun frequent filter. Futhermore, we improve the accuracy of motion detection by reducing the possibility of motion detection error using 3 tab median filter. In the final interpolation step, we adopt weighted sum of intra and inter interpolation pixels according to spatio-temporal variation ratio, thereby improving the quality in slow moving area. Simulation results show the efficacy of the proposed method with significant improvement over the previous methods in terms of the objective PSNR quality as well as the subjective image quality.

A Comparison of Spatio-Temporal Variation Pattern of Sea Surface Temperature According to the Regional Scale in the South Sea of Korea (지역 규모에 따른 한국 남부해역 표층수온의 시·공간적 변동 패턴 비교)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.182-193
    • /
    • 2011
  • In order to compare the spatio-temporal variation pattern of sea surface temperature (SST) in Korea's Southern areas of the sea according to a regional scale, this study has selected the winter and summer seasons for 31 years (1980~2010) in a period aspect and selected three areas of the sea such as the Western areas of the sea (region B) and Eastern areas of the sea (region C) around Jeju Island in addition to overall Southern areas of the sea (region A) in regional aspect. The regression analysis was applied to find out a temporal variation pattern of SST, and the weighted mean center (WMC) of SST as well as analysis of a standard deviational ellipse (SDE) was respectively applied. As a result of regression analysis of SST, it showed a rising long-term trend for all two seasons in three regions. However, though the average SST for 31 years was all similar in three regions in the summer season, the region C appeared more highly than region B in the winter season. The spatial variation pattern of SST for two seasons showed that it is respectively different from each other in three regions. The spatial variation pattern of SST appeared as E-W direction in region A, SE-NW direction in region B and SW-NE direction in region C. In addition, the relationship between the location of the WMC of SST and the average SST showed correlation in regions A and B in the winter season, whereas it appeared that there is no correlation in region C. Accordingly, it can be known that the regional scale should be considered in case of analysis of spatio-temporal variation patterns of SST.

Spatio-temporal Variability of Soil Moisture within Remote Sensing Footprints in Semi-arid Area (건조지역 원격탐사 footprint 내 토양수분의 시공간적 변동성 분석)

  • Hwang, Kyotaek;Cho, Hun Sik;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.285-293
    • /
    • 2010
  • Soil moisture is a key factor to control the exchange of water and energy between the surface and the atmosphere. In recent, many researches for spatial and temporal variability analyses of soil moisture have been conducted. In this study, we analyzed the spatio-temporal variability of soil moisture in Walnut Gulch Experimental Watershed, Arizona, U.S. during the Soil Moisture Experiment 2004 (SMEX04). The spatio-temporal variability analyses were performed to understand sensitivity of five observation sites with precipitation and relationship between mean soil moisture, and its standard deviation and coefficient of variation at the sites, respectively. It was identified that log-normal distribution was superior to replicate soil moisture spatial patterns. In addition, precipitation was identified as a key physical factor to understand spatio-temporal variability of soil moisure based on the temporal stability analysis. Based on current results, higher spatial variability was also observed which was agreed with the results of previous studies. The results from this study should be essential for improvement of the remotely sensed soil moisture retrieval algorithm.

Relationships between Spatio-temporal Distribution of Cochlodinium polykrikoides Red Tide and Meso-scale Variation of Oceanographic Environment around the Korean Waters (C. polykrikoides 적조의 시공간분포와 중규모 해양환경 변동간의 관계성)

  • Suh, Young-Sang;Jang, Lee-Hyun;Kim, Hak-Gyoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.139-150
    • /
    • 2003
  • There was a close relationship between spatio-temporal distribution of Cochlodinium polykrikoides red tide and meso-scale variation of oceanographic environment around the Korean waters. Oceanographic conditions of Narodo island, where red tide usually first occurred during summer seasons were formation of the thermohaline frontal zone from 1995 to 2001. Huge C. polykrikoides red tides were observed in every uneven year during the past 7 years (1995~2001) and quasi-biennial oscillation also occurred in the oceanographic variations of sea surface temperature and salinity in the northern part of the East China Sea during the same years. The distribution area and moving pattern of C. polykrikoides red tides were definitely depended on the temporal and spatial variation of upwelling cold water originated form the southeastern coast of the Korean peninsula in summer season.

  • PDF

Spatio-Temporal Variation of Cold Water Masses along the Eastern Coast of Korea in 2013 and 2014

  • Han, In-Seong;Park, Myung-Hee;Min, Seung-Hwan;Kim, Ju-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.286-295
    • /
    • 2016
  • With the results of observations in 2013 and 2014 including ocean buoys, in-situ investigations and wind data, we examined the spatio-temporal variation of cold water masses along the eastern coast of Korea. Usually, a cold water mass first appears along the northern part of the eastern coast from May to July, and then along the southern part of the eastern coast from late June to mid-August. Cold water masses appear 3~5 times a year and remain for 5~20 days in the southwestern part of the East Sea. A distinctive cold water mass appeared usually in mid-July in this area, the surface temperature of which was below $10^{\circ}C$ in some cases. During the appearance of a cold water mass in the southwestern part of the East Sea, the horizontal temperature gradient was large at the surface and a significant low water temperature below $8^{\circ}C$ appeared at the bottom level. This appearance of cold water masses clearly corresponded to southwesterly winds, which generated coastal upwelling.

Interannual Variabilities of Sea Surface Temperature and Sea Level Anomaly related to ENSO in the Tropical and North Pacific Ocean System (열대 및 북태평양에서 ENSO와 관련된 표층수온과 해면고도의 경년 변동성)

  • Kim, Eung;Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2008
  • In order to understand the variation of ENSO-related oceanic environments in the tropical and North Pacific Ocean, spatio-temporal variations of sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) are analyzed from distributions of complex empirical orthogonal functions (CEOF). Correlations among warm pool variation, southern oscillation index, and ocean surface currents were also examined with respect to interannual variability of the warm pool in western tropical Pacific. Spatio-temporal distributions of the first CEOF modes for SSTA and SSHA indicate that their variabilities are associated with ENSO events, which have a variance over 30% in the North Pacific. The primary reasons for their variabilities are different; SST is predominantly influenced by the change of barrier layer thickness, while SSH fluctuates with the same phase as propagation of an ENSO episode in the zonal direction. Horizontal boundary of warm pool area, which normally centered around $149^{\circ}E$ in the tropics, seemed to be expanded to the middle and eastern tropical regions by strong zonal currents through the mature phase of an ENSO episode.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

Characteristics of Spacio-Temporal Variation for PM10 Concentration in Busan (부산지역 PM10농도의 시간 및 공간적 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1033-1041
    • /
    • 2003
  • Hourly data of PM10 concentration collected from nine automatic air quality monitoring stations in Busan from 1999 to 2002 were analyzed to evaluate the spatio-temporal variation and meteorological characteristics of PM10 episodes in Busan metropolitan area. Mean concentrations ranged from 47$\mu\textrm{g}$/㎥ to 77$\mu\textrm{g}$/㎥. For most stations, mean seasonal hourly concentrations are lowest in summer and highest in spring. PM10 episode above daily mean standard(150$\mu\textrm{g}$/㎥) exhibited a maximum frequency at Gamjeondong and a minimum at Dongsamdong, and a maximum in March and a minimum in July and August. The diurnal variation of PM10 episode days is strongly influenced by traffic loads and meteorological conditions.