• Title/Summary/Keyword: Spatio-temporal prediction

Search Result 87, Processing Time 0.023 seconds

Salty Wind Damages in Windbreak Forests of Jeju Island by Typhoon Bolaven (태풍 볼라벤에 의한 제주도 방풍림 조풍(潮風) 피해)

  • Choi, Kwang Hee;Choi, Gwangyong;Kim, Yoonmi
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.18-31
    • /
    • 2014
  • In this study, the spatio-temporal patterns of salty wind by typhoon in Jeju Island and their damages to windbreak forests are examined. To investigate these patterns, field trips as well as analyses of meteorological data were conducted after the attack of typhoon BOLAVEN in late August, 2012. Collected data show that salty wind damage in windbreak trees by the typhoon was distinct in the southern and eastern coastal areas due to the southeasterly gusts with less precipitation. Most of trees including Japanese cedar (Cryptomeria japonica) within 8km from the coast as well as pine trees (Pinus thunbergii) along the coasts were damaged by salty water driven by the typhoon, but the magnitude of its damages and recovery rates of damaged vegetation varied by species. These results indicate that prediction and proactive activities for salty wind are needed to reduce its damages to local vegetation particularly before the arrival of a dry typhoon accompanying gusty wind.

  • PDF

Analysis on Winter Atmosphereic Variability Related to Arctic Warming (북극 온난화에 따른 겨울철 대기 변동성 분석 연구)

  • Kim, Baek-Min;Jung, Euihyun;Lim, Gyu-Ho;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model (도시성장 시나리오와 CLUE-s 모형을 이용한 우리나라의 토지이용 변화 예측)

  • LEE, Yong-Gwan;CHO, Young-Hyun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.

WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models (기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측)

  • KIM, SOO BIN;LEE, JAE SEONG;KIM, KYUNG TAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.71-86
    • /
    • 2022
  • The water quality index (WQI) has been widely used to evaluate marine water quality. The WQI in Korea is categorized into five classes by marine environmental standards. But, the WQI calculation on huge datasets is a very complex and time-consuming process. In this regard, the current study proposed machine learning (ML) based models to predict WQI class by using water quality datasets. Sihwa Lake, one of specially-managed coastal zone, was selected as a modeling site. In this study, adaptive boosting (AdaBoost) and tree-based pipeline optimization (TPOT) algorithms were used to train models and each model performance was evaluated by metrics (accuracy, precision, F1, and Log loss) on classification. Before training, the feature importance and sensitivity analysis were conducted to find out the best input combination for each algorithm. The results proved that the bottom dissolved oxygen (DOBot) was the most important variable affecting model performance. Conversely, surface dissolved inorganic nitrogen (DINSur) and dissolved inorganic phosphorus (DIPSur) had weaker effects on the prediction of WQI class. In addition, the performance varied over features including stations, seasons, and WQI classes by comparing spatio-temporal and class sensitivities of each best model. In conclusion, the modeling results showed that the TPOT algorithm has better performance rather than the AdaBoost algorithm without considering feature selection. Moreover, the WQI class for unknown water quality datasets could be surely predicted using the TPOT model trained with satisfactory training datasets.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

A Study on the Timing of Spring Onset over the Republic of Korea Using Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 우리나라 봄 시작일에 관한 연구)

  • Kwon, Jaeil;Choi, Youngeun
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.675-689
    • /
    • 2014
  • This study applied Ensemble Empirical Mode Decomposition(EEMD), a new methodology to define the timing of spring onset over the Republic of Korea and to examine its spatio-temporal change. Also this study identified the relationship between spring onet timing and some atmospheric variations, and figured out synoptic factors which affect the timing of spring onset. The averaged spring onset timing for the period of 1974-2011 was 11th, March in Republic of Korea. In general, the spring onset timing was later with higher latitude and altitude regions, and it was later in inland regions than in costal ones. The correlation analysis has been carried out to find out the factors which affect spring onset timing, and global annual mean temperature, Arctic Oscillation(AO), Siberian High had a significant correlation with spring onset timing. The multiple regression analysis was conducted with three indices which were related to spring onset timing, and the model explained 64.7%. As a result of multiple regression analysis, the effect of annual mean temperature was the greatest and that of AO was the second. To find out synoptic factors affecting spring onset timing, the synoptic analysis has been carried out. As a result the intensity of meridional circulation represented as the major factor affect spring onset timing.

  • PDF

Vulnerability Assessment for Public Health to Climate change Using Spatio-temporal Information Based on GIS (GIS기반 시공간정보를 이용한 건강부문의 기후변화 취약성 평가)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Oh, Su-Hyun;Byun, Jung-Yeon
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2012
  • To prevent the damage to human health by climate change, vulnerability assessment should be conducted for establishment of adaptation strategies. In this study, vulnerability assessment was conducted to provide information about vulnerable area for making adaptation policy. vulnerability assessment for human health was divided into three categories; extreme heat, ozone, and epidemic disease. To assess vulnerability, suitable indicators were selected by three criteria; sensitivity, adaptive capacity, and exposure, spatial data of indicators were prepared and processed using GIS technique. As a result, high vulnerability to extreme heat was shown in the low land regions of southern part. And vulnerability to harmful ozone was high in the surrounding area of Dae-gu basin and metropolitan area with a number of automobiles. Vulnerability of malaria and tsutsugamushi disease have a region-specific property. They were high in the vicinity of the Dimilitarized zone and south-western plain, respectively. In general, vulnerability of human health was increased in the future time. Vulnerable area was extended from south to central regions and from plain to low mountainous regions. For assessing vulnerability with high accuracy, it is necessary to prepare more related indicators and consider weight of indicators and use climate prediction data based on the newly released scenario when assessing vulnerability.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date (정식일 이동에 따른 배추 잠재수량성의 시공간적 변화 전망)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.298-306
    • /
    • 2016
  • Planting date shift is one of the means of adapting to climate change in Kimchi Cabbage growers in major production areas in Korea. This study suggests a method to estimate the potential yield of Kimchi Cabbage based on daily temperature accumulation during the growth period from planting to maturity which is determined by a plant phenology model tuned to Kimchi Cabbage. The phenology model converts any changes in the thermal condition caused by the planting date shift into the heat unit accumulation during the growth period, which can be calculated from daily temperatures. The physiological maturity is estimated by applying this model to a variable development rate function depending either on growth or heading stage. The cabbage yield prediction model (Ahn et al., 2014) calculates the potential yield of summer cabbage by accumulating daily heat units for the growth period. We combined these two models and applied to the 1km resolution climate scenario (2000-2100) based on RCP8.5 for South Korea. Potential yields in the current normal year (2001-2010) and the future normal year (2011-2040, 2041-2070, and 2071-2100) were estimated for each grid cell with the planting dates of July 1, August 1, September 1, and October 1. Based on the results, we divided the whole South Korea into 810 watersheds, and devised a three - dimensional evaluation chart of the time - space - yield that enables the user to easily find the optimal planting date for a given watershed. This method is expected to be useful not only for exploring future new cultivation sites but also for developing cropping systems capable of adaptation to climate change without changing varieties in existing production areas.