• 제목/요약/키워드: Spatio-temporal pattern

검색결과 151건 처리시간 0.024초

시변패턴 인식을 위한 2단 구조의 신경회로망 (Two stage neural network for spatio-temporal pattern recognition)

  • 임정수;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2290-2292
    • /
    • 1998
  • This paper introduces Two-stage neural network that is capable of recognizing spatio-temporal patterns. First stage takes a spatio-temporal pattern as input and compress it into sparse spatio-temporal pattern. Second stage is for temporal pattern recognition with nonuniform inhibitory connections and different cell sizes. These are basic properties for detecting a embeded pattern in a larger pattern. The network is evaluated by computer simulation.

  • PDF

STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교 (A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods)

  • 이연식;김은아
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.49-63
    • /
    • 2009
  • 시공간 이동 패턴 탐사는 특성상 방대한 시공간 데이터의 분석 및 처리 방법에 따라 패턴 탐사의 성능이 좌우된다. 기존의 시공간 패턴 탐사 기법들[1-10]이 가진 패턴 탐사 수행 시간이나 패턴 탐사 시 사용되는 메모리양이 증가하는 문제를 해결하기 위해 일부 기법에서 몇 가지 방법을 제시하였으나 아직 미비한 실정하다. 이에 선행 연구로 방대한 시공간 이동 데이터 집합으로부터 순차적이고 주기적인 빈발 이동 패턴을 효과적으로 추출하기 위한 STMP/MST 탐사 기법[11]을 제안하였다. 제안된 기법은 해시 트리 기반의 이동 시퀀스 트리를 생성하여 빈발 이동 패턴을 탐사함으로써 탐사 수행 시간을 최소화하고, 상세 수준의 이력 데이터들을 실세계의 의미있는 시간 및 공간영역으로 일반화하여 탐사 시 소요되는 메모리양을 감소시킬 수 있다. 본 논문에서는 이러한 STMP/MST 탐사 기법의 효율성을 검증하기 위해서 탐사 대상 데이터양과 최소지지도를 기준으로 기존의 시공간 패턴 탐사 기법들과 탐사 수행 성능을 비교하고 분석한다.

  • PDF

시공간패턴인식 신경회로망의 설계 (Neural Network Design for Spatio-temporal Pattern Recognition)

  • 임정수;이종호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법 (The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree)

  • 이연식;고현
    • 정보처리학회논문지D
    • /
    • 제16D권2호
    • /
    • pp.237-248
    • /
    • 2009
  • 최근 이동 객체의 동적인 위치나 이동성에 기반하여 여러 분야에 적용가능한 위치 기반 서비스를 개발하고자 다양한 객체의 이동 패턴들로 부터 유용한 패턴을 추출하기 위한 패턴 탐사 기법에 대한 연구가 활발히 진행되고 있다. 이동 패턴 탐사는 특성상 방대한 시공간 데이터의 분석 및 처리 방법에 따라 패턴 탐사의 성능이 좌우된다. 기존의 시공간 패턴 탐사 기법들[1-6,8-11] 중 일부는 이러한 문제를 해결하기 위한 방법을 제시하였으나, 패턴 탐사 수행 시간이나 패턴 탐사 시 사용되는 메모리양을 최소화하는데 있어 아직 부족한 실정이다. 이에 본 논문에서는 방대한 시공간 이동 데이터 집합으로부터 순차적이고 주기적인 빈발 이동 패턴을 효과적으로 추출하기 위한 새로운 시공간 이동 패턴 탐사기법을 제안한다. 제안된 기법에서는 이동 객체의 이력 데이터로부터 해시 트리 기반의 이동 시퀀스 트리를 생성하여 빈발 이동 패턴을 탐사함으로써 탐사 수행 시간을 $83%{\sim}93%$ 감소시키고, 시간 및 공간 속성을 가진 상세 수준의 이력 데이터들을 공간 및 시간 개념 계층을 이용하여 실세계의 의미있는 시간 및 공간영역으로 일반화함으로써 탐사 시 소요되는 메모리양을 감소시켜 보다 효과적인 패턴 탐사를 유도한다.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • 제6권4호
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

시공간 이동 패턴 추출을 위한 효율적인 알고리즘 (An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction)

  • 박지웅;김동오;홍동숙;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권2호
    • /
    • pp.39-52
    • /
    • 2006
  • 최근 들어 이동 객체의 이력 (history) 데이타에서 이동 객체의 이동 패턴, 즉 연속되는 시간 영역에서 반복적으로 발생되는 공간 이동 경로와 같은 다양한 지식을 추출하여 활용하는 응용 서비스의 활용성이 점점 증대되고 있다. 그러나 기존의 이동 패턴 추출 방법은 최소지지도(minimum support)가 낮은 경우에 많은 수의 후보 이동 패턴이 생성되고 이로 인하여 수행 시간과 소요 메모리가 급격히 증가하게 되는 단점이 있다. 본 논문에서는 대용량의 시공간 데이타 집합으로부터 이동 객체의 이동 패턴을 효율적으로 추출하기 위한 STMPE(Spatio-Temporal Moving Pattern Extracting) 알고리즘을 제안한다. STMPE 알고리즘은 시공간 데이타를 일반화시킴으로서 메모리 사용량을 최소화할 수 있으며, 단기 이동 패턴을 작성하여 유지하기 때문에 데이타베이스 스캔 횟수를 최소화할 수 있다. STMPE 알고리즘은 모든 부분에서 시간 정보를 갖는 다른 시공간 이동 패턴 추출 알고리즘보다 최소지지도가 낮아질수록, 이동 객체의 수가 증가할수록, 시간 분할 횟수가 많아질수록 더욱 뛰어난 성능을 보였다.

  • PDF

Spatio-temporal방법을 이용한 지역명 인식에 관한 연구 (A Study on the recognition of local name using Spatio-Temporal method)

  • 지원우
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.121-124
    • /
    • 1993
  • This paper is a study on the word recognition using neural network. A limited vocabulary, speaker independent, isolated word recognition system has been built. This system recognizes isolated word without performing segmentation, phoneme identification, or dynamic time wrapping. It needs a static pattern approach to recognize a spatio-temporal pattern. The preprocessing only includes preceding and tailing silence removal, and word length determination. A LPC analysis is performed on each of 24 equally spaced frames. The PARCOR coefficients plus 3 other features from each frame is extracted. In order to simplify a structure of neural network, we composed binary code form to decrease output nodes.

  • PDF

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.

극치강수량의 시공간적 특성 분석 및 지역화에 관한 연구 (Analysis on Spatio-Temporal Pattern and Regionalization of Extreme Rainfall Data)

  • 이정주;권현한
    • 대한토목학회논문집
    • /
    • 제31권1B호
    • /
    • pp.13-20
    • /
    • 2011
  • 강수량은 시공간적으로 변화하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 본 연구에서는 극치강수량의 지역빈도해석을 위한 범주화 과정에서 기존의 강수량과 관측소 위치좌표만을 이용한 범주화를 통해 해결할 수 없는 강우 발생의 계절적 변화와 집중에 대한 고려를 반영하기 위하여, 기존의 양적 범주화 과정에 시간적인 영향을 고려할 수 있는 요소로서 극치강수량 발생 시기 통계치를 활용할 수 있는 범주화 과정을 제시하였다. 본 연구에서는 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 수정 K-means 방법을 이용하여 군집화 해석을 수행하였으며, 전국을 다섯 개의 군집으로 분류하였다. 기존의 양적 범주화 결과와의 비교를 통해 발생 시간 통계치를 결합한 범주화 결과가 지형 및 권역을 반영하는 결과를 보임을 확인하였다.

Spatio-Temporal Pattern Recognition Neural Network를 이용한 전동 휠체어의 음성 제어에 관한 연구 (A Study on the Voice-Controlled Wheelchair using Spatio-Temporal Pattern Recognition Neural Network)

  • 백승우;김승범;권장우;이응혁;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 춘계학술대회
    • /
    • pp.90-93
    • /
    • 1993
  • In this study, Korean speech was recognized by using spatio-temporal recognition neural network. The subjects of speech are numeric speech from zero to nine and basic command which might be used for motorized wheelchair developed it own Lab. Rabiner and Sambur's method of speech detection was used in determining end-point of speech, speech parameter was extracted by using LPC 16 order. The recognition rate was over 90%.

  • PDF