• Title/Summary/Keyword: Spatio-temporal Data Stream

Search Result 29, Processing Time 0.021 seconds

A Spatio-Temporal DSMS for the Real-time Management of Moving Objects (이동체의 실시간 관리를 위한 시공간 DSMS)

  • Kim, Jang-Woo;Park, Chun-Geol;Kim, Dong-Oh;Han, Ki-Joon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-14
    • /
    • 2007
  • 오늘날 모바일 장치 기술, 위치 측위 기술, 무선 통신 기술 등이 급속도로 발달하고 이동체 위치 데이타가 널리 활용됨에 따라 차량 관리 시스템, 차량 배차 및 제어 시스템 등과 같은 이동체 위치 데이타를 실시간으로 서비스하기 위한 시스템이 개발되고 있다. 그러나 이러한 시스템에서 기반 시스템으로 사용되는 MO(Moving Object) DBMS 같은 이동체 관리 시스템은 이동체의 실시간 스트림 관리에 비효율적이고, 기존의 DSMS(Data Stream Management System)와 같은 스트림 관리 시스템은 공간 데이터를 효율적으로 처리하지 못하고 있다. 따라서, 본 논문에서는 이동체 위치 데이타의 효율적인 실시간 관리를 위한 시공간 DSMS를 설계 및 구현하였다. 본 논문에서 구현한 시공간 DSMS는 스탠포드 대학의 STREAM(STanford stREam dAta Manager)을 기반으로 이동체 위치 데이타의 실시간 관리와 공간 및 시공간 질의 처리 기능을 지원하는 시스템이다. 특히, 시공간 DSMS에서 사용하는 시공간 함수는 호환성을 위해서 OGC에서 제시한 "SQL을 위한 심플 피쳐 명세"를 따르는 표준 인터페이스를 지원한다. 마지막으로 본 논문에서 구현한 시공간 DSMS를 이동체 위치 데이타의 실시간 관리가 필요한 실시간 모니터링 분야에 적용해 봄으로써 시스템의 효용성을 입증하였다.

  • PDF

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Temporal-Spatial Analysis of Landscape Diversity using FRAGSTATS (FRAGSTATS를 활용한 경관다양성의 시공간적 분석)

  • Kwon, Oh-Sung;Ra, Jung-Hwa;Ku, Ji-Na;Kim, Jin-Hyo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.39-50
    • /
    • 2015
  • This research selected Daegu Metropolitan City representing a combination of natural space and urban space for this case study. To achieve this, a prerequisite was to set up an optimal block size to evaluate landscape diversity of the research site by using a RPR-Area Curve. Further, landscape diversity evaluation was conducted based on land cover map by using FRAGSTATS to analyze spatio-temporal changes. Notably, this research regarded it as the most significant to set forth criteria in order to apply landscape diversity to the development plans of the newtown and outskirt of a city under high pressure development. Results derived from this research are summarized as follows. According to the results derived from establishing the optimal block size, a size about $2km^2$ was analyzed to measure landscape diversity of the research site. Also, according to the results derived from land diversity evaluation based on land cover map, land diversity was highly measured around urban stream such as Nakdong River and Geumho River, and in particular, the value of landscape diversity was measured considerably high around the urban parks. Results derived from analysis on spatio-temporal changes of land diversity demonstrated that a certain level of urban development exerted a positive effect on an increase in land diversity, but consistent urban development lowered a value of landscape diversity. Results derived from regression analysis to set forth the optimal urban space showed that an urban area of a space about $2km^2$ exerted a positive effect at a rate of about 0~43.3% and a negative effect at a rate about 43.3~100%. In conclusion, the results of this research are considered to provide important basic data for future urban and landscape planning. Nonetheless, as only the layout on the 2D plane was analyzed in this research, further research in future is required to complexly consider diverse factors such as height of structure and change in visible real area arising from geographical features.

An Optimization Technique of Scene Description for Effective Transmission of Interactive T-DMB Contents (대화형 T-DMB 컨텐츠의 효율적인 전송을 위한 장면기술정보 최적화 기법)

  • Li Song-Lu;Cheong Won-Sik;Jae Yoo-Young;Cha Kyung-Ae
    • Journal of Broadcast Engineering
    • /
    • v.11 no.3 s.32
    • /
    • pp.363-378
    • /
    • 2006
  • The Digital Multimedia Broadcasting(DMB) system is developed to offer high quality audio-visual multimedia contents to the mobile environment. The system adopts MPEG-4 standard for the main video, audio and other media format. It also adopts the MPEG-4 scene description for interactive multimedia contents. The animated and interactive contents can be actualized by BIFS(Binary Format for Scene), the binary format for scene description that refers to the spatio-temporal specifications and behaviors of the individual objects. As more interactive contents are, the scene description is also needed more high bitrate. However, the bandwidth for allocating meta data such as scene description is restrictive in mobile environment. On one hand, the DMB terminal starts demultiplexing content and decodes individual media by its own decoder. After decoding each media, rendering module presents each media stream according to the scene description. Thus the BIFS stream corresponding to the scene description should be decoded and parsed in advance of presenting media data. With these reason, the transmission delay of BIFS stream causes the delay of whole audio-visual scene presentation although the audio or video streams are encoded in very low bitrate. This paper presents the effective optimization technique for adapting BIFS stream into expected MPEG-2 TS bitrate without any bandwidth waste and avoiding the transmission delay of the initial scene description for interactive DMB contents.

Performance Assessment of Two-stream Convolutional Long- and Short-term Memory Model for September Arctic Sea Ice Prediction from 2001 to 2021 (Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1047-1056
    • /
    • 2022
  • Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional long-and short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TS-ConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TS-ConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Development of Regression Models for Estimation of Unmeasured Dissolved Organic Carbon Concentrations in Mixed Land-use Watersheds (복합토지이용 유역의 수질 관리를 위한 미측정 용존유기탄소 농도 추정)

  • Min Kyeong Park;Jin a Beom;Minhyuk Jeung;Ji Yeon Jeong;Kwang Sik Yoon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.162-174
    • /
    • 2023
  • In order to prevent water pollution caused by organic matter, Total Organic Carbon(TOC) has been adopted indicator and monitored. TOC can be divided into Dissolved Organic Carbon(DOC) and Particulate Organic Carbon(POC). POC is largely precipitated and removed during stream flow, which making DOC environmentally significant. However, there are lack of studies to define spatio-temporal distributions of DOC in stream affected by various land use. Therefore, it is necessary to estimate the past DOC concentration using other water quality indicators to evaluate status of watershed management. In this study, DOC was estimated by correlation and regression analysis using three different organic matter indicators monitored in mixed land-use watersheds. The results of correlation analysis showed that DOC has the highest correlation with TOC. Based on the results of the correlation analysis, the single- and multiple-regression models were developed using Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), and TOC. The results of the prediction accuracy for three different regression models showed that the single-regression model with TOC was better than those of the other multiple-regression models. The trend analysis using extended average concentration DOC data shows that DOC tends to decrease reflecting watershed management. This study could contribute to assessment and management of organic water pollution in mixed land-use watershed by suggesting methods for assessment of unmeasured DOC concentration.

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.