• Title/Summary/Keyword: Spatial variation

Search Result 1,358, Processing Time 0.028 seconds

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

Seismic Response Analysis of Bridges Considering Spatial Variation of Input Ground Motion (입력지반운동의 공간적 변화를 고려한 교량의 지진응답해석)

  • Choi, Kwang-Gyu;Kang, Seung-Woo;Kook, Seung-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • This paper presents a seismic response analysis of bridge structures considering the spatial variation of input ground motion. In earthquake analyses of structures, it is usually assumed that the input ground motion is the same at every support. However, this assumption is not justified for long structures like bridges, because observations have shown that the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, an analysis of the foundation-soil interaction must always be performed. To consider the foundation-soil interaction, a soil response analysis is performed first, and after determining the material characteristics of the foundation element obtained by this foundation-soil interaction analysis, the seismic response analysis of a bridge superstructure with equivalent springs and dampers is performed. Finally, the influences of the spatial variation in the input motion, which are affected by different soil characteristics, are considered.

Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

Chemical Properties of Sediment in Nanakita Estuarine Tidal Flat: Estimation of Sedimentary Organic Matter Origin by Stable Isotope and Fatty Acid

  • Shin, Woo-Seok;Aikawa, Yoshio;Nishimura, Osamu
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • The spatial variation of organic matter sources in tidal flat sediment of the Nanakita River estuary, involving Gamo lagoon on the north-east coast of Honshu Island, Japan, was examined using carbon stable isotopes and fatty acid biomarkers. The spatial variation of total organic carbon (TOC) contents and ${\delta}^{13}C$ values were highly variable in between the stations, such as sandy flat (1.3 mg/g, -21.0‰), sand-muddy flat (2.6 mg/g, -21.9‰), and muddy flat (24.9 mg/g, -25.9‰), respectively. Particularly, at the muddy flat, high TOC content and low ${\delta}^{13}C$ value of the sediments indicated that the surface sediment was composed largely of terrestrial organic matter. Whereas, at the sandy flat and sand-muddy flat, the high ratios of diatom and bacteria biomarkers indicated the high contribution of abundant microorganism along with marine organic matter in sediment composition. From these results, it considered that the amount and origin of transported sedimentary organic matter indicated different characteristics in this study stations.

Analysis of Temporal and Spatial Variation of Precipitable Water Vapor According to Path of Typhoon EWINIAR using GPS Permanent Stations

  • Won, Jihye;Kim, Dusik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2015
  • In this study, the temporal and spatial variation in precipitable water vapor (PWV) was analyzed for typhoon Ewiniar which had made landfall in the Korean peninsula in 2006. To make a contour map of PWV, zenith total delay (ZTD) was calculated using about 60 GPS permanent stations in Korea, and the pressure and temperature data of nearby AWS stations were interpolated and applied to the equation for calculating the PWV. While Typhoon Ewiniar was migrating north from the southern coast to the eastern coast of Korea, the PWV migrated showing a spatial distribution similar to that of rainfall. Also, the fluctuating pattern of the normalized PWV was analyzed, and the moving speed of the PWV was estimated using the delay time of the increase/decrease pattern in the eight-test stations. The result indicated that the moving speed of the PWV was about 35 km/h, which was similar to the average moving speed of the typhoon (38.9 km/h).

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

The Assessment of Coastal Water Quality Grade Using GIS (GIS를 이용한 연안 수질등급 평가)

  • Jeong, Jong-Chul;Cho, Hong-Lae
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • The purpose of this study is to assess spatiotemporal variation of coastal water quality according to time and location changes. For this we developed numerical marine trophic index base on four water quality components (chlorophyll, suspended solids, dissolved inorganic nitrogen and phosphorus) and applied this index to the water quality data measured in the korean coastal zone for the 7-years period from 1997 to 2003. Water quality data are obtained only at selected sites even though they are potentially available at any location. Therefore, in order to estimate spatial variation of coastal water quality, it is necessary to estimate the unknown values at unsampled locations based on observation data. In this study, we used IDW (Inverse Distance Weighted) method to predict water quality components at unmeasured locations and applied marine trophic index to predicted values obtained by IDW interpolation. The results of this study indicate that marine trophic index and spatial interpolation are useful for understanding spatiotemporal characteristics of coastal water quality.

Phosphorus Speciation and Bioavailability in Intertidal Sediments of Keunso Bay, Yellow Sea During Summer and Winter (서해 근소만 조간대 퇴적물에서 여름과 겨울에 인의 존재형태)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.177-186
    • /
    • 2010
  • A sequential extraction technique was used to study sediment phosphorus speciation and its relative importance in the intertidal flat of Keunso Bay during summer and winter for a better understanding of the phosphorus cycle and bioavailability in intertidal sediments. Loosely sorbed P contents were the lowest among the five P-pools and showed little seasonal or spatial variation. Although Fe-bound P contents were almost constant in winter, they decreased rapidly with sediment depth in summer. The dissolution of Fe oxides, used as an oxidant for the anaerobic respiration, ascribed the rapid decrease of Fe-bound P in summer. Al-bound P contents displayed little seasonal variation, but showed a large spatial variation, with higher values in the upper intertidal flat. Comprising about 50% of total P, Ca-bound P contents were the highest among the five P-pools. Ca-bound P contents were higher in winter than summer, but did not exhibit a clear spatial variation. Organic P contents were higher in summer than winter, which was associated with higher primary production and clam biomass in summer. Organic P contents were higher in the lower intertidal flat than the upper intertidal flat. In Keunso Bay, bioavailable P contents of the intertidal flat comprising about one third of total P ranged from 2.41 to 5.09 ${\mu}molg^{-1}$ in summer and 3.82 to 5.29 ${\mu}molg^{-1}$ in winter. The bioavailability of P contents was higher in the lower intertidal flat than the upper intertidal flat, which was attributed to the large clam production in the lower intertidal flat.

A Spatio-Temporal Variation Pattern of Oiling Status Using Spatial Analysis in Mallipo Beach of Korea (공간분석 기법을 이용한 만리포 유분의 시·공간 변동 패턴 분석)

  • Kim, Tae-Hoon;Choi, Hyun-Woo;Kim, Moon-Koo;Shim, Won-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.90-103
    • /
    • 2012
  • Mallipo is a representative beach contaminated by Hebei Spirit oil spill accident in December 2007. This study aims to compare the differences of two seasons (winter and summer) for the spatio-temporal variation patterns of oiling status in the whole area and divided five regions of Mallipo beach. In the whole area, the decreasing rate of average TPH (total petroleum hydrocarbon) in winter was twice greater than summer during four years. According to the spatial variation pattern analysis of oiling status using weighted mean center and weighted standard distance, the oil concentration was clustered on southwestern region in winter, however, the TPH was dispersed in the whole area in summer. Temporal variation pattern of TPH in each of Mallipo's five regions showed that TPH had been consistently decreased in winter, but oil concentration had not been changed in summer since 2009 except the southwestern region. Therefore, in order to evaluate and predict the progress of oiling status, it is needed to analyze the spatio-temporal variation pattern of TPH using spatial analysis after separating data into seasons (e.g., winter and summer). In addition, time series analysis is useful in the regional scales through spatial partitioning rather than the whole beach area for the understanding of temporal variation pattern.