• Title/Summary/Keyword: Spatial target

Search Result 771, Processing Time 0.029 seconds

Accomplishments and Challenges of Vietnamese's NTP-NRD during the 1st Stage(2010-2015) (베트남 신 농촌개발운동 1단계 (2010-2015) 사업의 성과와 한계)

  • Ko, Soonchul
    • Journal of Agricultural Extension & Community Development
    • /
    • v.23 no.4
    • /
    • pp.459-470
    • /
    • 2016
  • The purpose of this study was to examine the accomplishments and problems of National Target Program on New Rural Development(NTP-NRD) of the Vietnam government during the 1st stage(2011-2015). Based on the literature review and interview, the following suggestions were drawn with related to 19 criteria and 39 indicators; 1) the relationship between the overall goal and 19 criteria as its measures seems to be inconsistence, so that the meet of the 19 criteria regarded as the goal of the NTP-NRD, 2) there was no measures for the communes, where met the requirement of 19 criteria early, 3) most indicators were output oriented, while outcome level were little, 4) it needed to adjust for the some indicators as the implementation unit from commune level to more wider spatial level.

Optical HPEJTC system for removing false alarm and missing in the multitarget correlation (다중 표적 상관에 기인한 상관오류와 유실 제거를 위한 광 HPEJTC 시스템)

  • 이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.58-67
    • /
    • 1995
  • In this paper, we present a new HPEJTC system which is capable of real-time multi-target recognition and tracking with better discrimination by extracting the phase signal of reference function from the JTPS of the conventional optical JTC retaining the amplitude signal of the input function. In order to test the correlation discrimination performance of the HPEJTC system, some experiments are carried out on the scenarios susceptible to the false alarms and missing in which many similar targets are periodically loacted. And, the proposed HPEJTC is analyzed to be the real function version of the POF and finally the possibility of the real-time implementation of the POF is suggested, because it can be implemented by using spatial light modulator, CCD detector and some other optical components.

  • PDF

Analysis of Precision According to Photographing Position in Close-Range Digital Photogrammetry (근접수치사진측량의 촬영위치에 따른 정밀도 해석)

  • Seo, Dong-Ju;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.3-11
    • /
    • 2003
  • This study has made photographing respectively by changing the photographic distance, converging angle, picturing direction by use of Rollei d7 metric and d7 $metric^{5}$ that is a measurement digital camera. And also in order to minimize the errors happened at the relative orientation, we have sorted out the round target that the relative orientation is automatically on the programming and have calculated RMSE by carrying out the bundle adjustment. We think that such a study could be used as very important basic data necessary in deriving the optimal photographic conditions by the close-range digital photogrammetry and in judging such a degree.

  • PDF

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory

  • Yang, Qingshan;Li, Danyu;Hui, Yi;Law, Siu-Seong
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.197-207
    • /
    • 2020
  • Knowledge on the design value of extreme wind pressure coefficients (EWPC) of a specific zone of buildings is essential for the wind-resistant capacity of claddings. This paper presents a method to estimate the representative EWPC introducing the multivariate extreme value model. The spatial correlations of the extreme wind pressures at different locations can be consider through the multivariate extreme value. The moving average method is also adopted in this method, so that the measured point pressure can be converted to wind pressure of an area. The proposed method is applied to wind tunnel test results of a large flat roof building. Comparison with existing methods shows that it can give a good estimation for all target zones with different sizes.

Raman Chemical Imaging Technology for Food and Agricultural Applications

  • Qin, Jianwei;Kim, Moon S.;Chao, Kuanglin;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.170-189
    • /
    • 2017
  • Purpose: This paper presents Raman chemical imaging technology for inspecting food and agricultural products. Methods The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. Results & Conclusions: The main topics include Raman scattering principles, Raman spectroscopy measurement techniques (e.g., backscattering Raman spectroscopy, transmission Raman spectroscopy, and spatially offset Raman spectroscopy), Raman image acquisition methods (i.e., point-scan, line-scan, and area-scan methods), Raman imaging instruments (e.g., excitation sources, wavelength separation devices, detectors, imaging systems, and calibration methods), and Raman image processing and analysis techniques (e.g., fluorescence correction, mixture analysis, target identification, spatial mapping, and quantitative analysis). Raman chemical imaging applications for food safety and quality evaluation are also reviewed.

Semantic Prosody and Meaning Equivalence: Is Korean pin konggan Equivalent to ‘Empty Space’ or ‘Blank Space’\ulcorner (의미운률과 의미 등가성: ‘빈 공간’은 ‘empty space’인가 ‘blank space’인가\ulcorner)

  • 조의연
    • Korean Journal of English Language and Linguistics
    • /
    • v.3 no.4
    • /
    • pp.589-609
    • /
    • 2003
  • The purpose of this paper is to show that lexical equivalency in translation can be achieved when it is based on semantic prosodies of lexical items. This paper examines the semantic prosodies of two seemingly synonymous English adjectives ‘empty’ and ‘blank’ on the basis of the corpus given in Cobuild English Collocations on CD-ROM and proposes that they are different in terms of spatial dimensions. Thus when a Korean equivalent pin derived from the verb pita is translated into English, syntagmatic phraseological environments of the Korean adjective must be taken into account to attain the equivalency of the source and target languages. Relevant Korean corpus was taken from the 21st Century Sejong Plan (2002). Out of 12 examples of pin konggan, five appear to be equivalent to ‘blank’ and seven to ‘empty.’ The five to seven ratio in different usage indicates that the equivalency problem concerning the lexical item pin is not a trivial matter in translation.

  • PDF

Design rules for creating sensing and self-actuating microcapsules

  • Kolmakov, German V.;Yashin, Victor V.;Balazs, Anna C.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.199-211
    • /
    • 2011
  • Using computational modeling, we design a pair of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can undergo autonomous, directed motion. In the simulations, signaling microcapsules release "agonist" particles, while target microcapsules release "antagonist" particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution. Additionally, the released nanoscopic particles can bind to the underlying substrate and thereby create adhesion gradients that propel the microcapsules to move. Hydrodynamic interactions and the feedback mechanism provided by the dissolved particles are both necessary to achieve the cooperative behavior exhibited by these microcapsules. Our model provides a platform for integrating both the spatial and temporal behavior of assemblies of "artificial cells", and allows us to design a rich variety of structures capable of exhibiting complex dynamics. Due to the cell-like attributes of polymeric microcapsules and polymersomes, material systems are available for realizing our predictions.

Energy Savings in OFDM Systems through Cooperative Relaying

  • Khuong, Ho Van;Kong, Hyung-Yun
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Energy savings in orthogonal frequency division multiplexing (OFDM) systems is an active research area. In order to achieve a solution, we propose a new cooperative relaying scheme operated on a per subcarrier basis. This scheme improves the bit error rate (BER) performance of the conventional signal-to-noise ratio (SNR)-based selection relaying scheme by substituting SNR with symbol error probability (SEP) to evaluate the received signal quality at the relay more reliably. Since the cooperative relaying provides spatial diversity gain for each subcarrier, thus statistically enhancing the reliability of subcarriers at the destination, the total number of lost subcarriers due to deep fading is reduced. In other words, cooperative relaying can alleviate error symbols in a codeword so that the error correction capability of forward error correction codes can be fully exploited to improve the BER performance (or save transmission energy at a target BER). Monte-Carlo simulations validate the proposed approach.

  • PDF

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.