• Title/Summary/Keyword: Spatial network method

Search Result 544, Processing Time 0.028 seconds

FKP and VRS among Network RTK GNSS methods Accuracy Evaluation of Observation Methods (Network RTK GNSS방법 중 FKP와 VRS 관측 방법의 정확도 평가)

  • Jae-Woo, KIM;Do-Yeoul, MUN;Yeong-Jong, KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • Providing real-time location information is emerging as a major goal of the national industry. In order to provide such real-time location information (3D spatial information), it is essential to develop a technology for a satellite positioning method. Therefore, the country continues to make efforts to increase satisfaction with the needs of consumers by introducing the Network RTK GNSS method. In this study, among the Network RKT GNSS(Global Navigation Satellite System) methods provided by the National Geographic Information Service, continuous observation and single observation were measured at the integrated reference point using VRS(Virtual Reference Station) and FKP(Flӓachen-Korrektur Parameter) to evaluate accuracy. In addition, we aim to maximize efficiency by presenting accuracy on the rapidly increasing Network RTK GNSS method in the field.

Semijoin-Based Spatial Join Processing in Multiple Sensor Networks

  • Kim, Min-Soo;Kim, Ju-Wan;Kim, Myoung-Ho
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.853-855
    • /
    • 2008
  • This paper presents an energy-efficient spatial join algorithm for multiple sensor networks employing a spatial semijoin strategy. For optimization of the algorithm, we propose a GR-tree index and a grid-ID-based spatial approximation method, which are unique to sensor networks. The GR-tree is a distributed spatial index over the sensor nodes, which efficiently prunes away the nodes that will not participate in a spatial join result. The grid-ID-based approximation provides great reduction in communication cost by approximating many spatial objects in simpler forms. Our experiments demonstrate that the algorithm outperforms existing methods in reducing energy consumption at the nodes.

  • PDF

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.

Study on Generating Network Data for Pedestrians (보행자를 위한 네트워크 생성에 관한 연구)

  • Kim, Ji-Young;Lee, Jae-Bin;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.7-8
    • /
    • 2010
  • Due to development of wireless environment and portable device, it is possible to use navigation out of car. Specially, pedestrians can freely walk openspace, so there are limits that we use network data of car navigation systems for pedestrian navigation systems. Therefore, in this paper, we proposed the method of generating network data for pedestrians based on the exiting spatial data sets.

  • PDF

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

Next Location Prediction with a Graph Convolutional Network Based on a Seq2seq Framework

  • Chen, Jianwei;Li, Jianbo;Ahmed, Manzoor;Pang, Junjie;Lu, Minchao;Sun, Xiufang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1909-1928
    • /
    • 2020
  • Predicting human mobility has always been an important task in Location-based Social Network. Previous efforts fail to capture spatial dependence effectively, mainly reflected in weakening the location topology information. In this paper, we propose a neural network-based method which can capture spatial-temporal dependence to predict the next location of a person. Specifically, we involve a graph convolutional network (GCN) based on a seq2seq framework to capture the location topology information and temporal dependence, respectively. The encoder of the seq2seq framework first generates the hidden state and cell state of the historical trajectories. The GCN is then used to generate graph embeddings of the location topology graph. Finally, we predict future trajectories by aggregated temporal dependence and graph embeddings in the decoder. For evaluation, we leverage two real-world datasets, Foursquare and Gowalla. The experimental results demonstrate that our model has a better performance than the compared models.

Semi-Supervised Spatial Attention Method for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3685-3707
    • /
    • 2021
  • In recent years, facial attribute editing has been successfully used to effectively change face images of various attributes based on generative adversarial networks and encoder-decoder models. However, existing models have a limitation in that they may change an unintended part in the process of changing an attribute or may generate an unnatural result. In this paper, we propose a model that improves the learning of the attention mask by adding a spatial attention mechanism based on the unified selective transfer network (referred to as STGAN) using semi-supervised learning. The proposed model can edit multiple attributes while preserving details independent of the attributes being edited. This study makes two main contributions to the literature. First, we propose an encoder-decoder model structure that learns and edits multiple facial attributes and suppresses distortion using an attention mask. Second, we define guide masks and propose a method and an objective function that use the guide masks for multiple facial attribute editing through semi-supervised learning. Through qualitative and quantitative evaluations of the experimental results, the proposed method was proven to yield improved results that preserve the image details by suppressing unintended changes than existing methods.

Extraction of Road Networks from High Spatial Resolution Satellite Images by Wavelet Transform and Multiresolution Analysis (웨이블릿 변환과 다중해상도분석을 이용한 고해상도 위성영상에서의 도로망 추출)

  • Jung, In-Chul;Sohn, Ji-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.61-70
    • /
    • 2001
  • This paper presents a new method to extract semi-automatically roads from high spatial resolution satellite imagery. This method is based both on wavelet transform and on multiresolution analysis combined in the "$\grave{a}$ trous" algorithm. As an urban road network consists on different classes of streets, multiresolution processing allows to extract the streets class by class. The method was applied to a KVR-1000 image on a part of Busan Metropolitan City. The method was carried out for the road extraction of three different widths and it succeeded in extracting good fitted strips. The accuracy analysis for three types of streets was also performed. The overall accuracy in 4 pixels of width is 80.5%. The result suggests that this method can be used to update road networks in the studied urban network. In summary, the multiresolution approach based on the wavelet transform, used in this study, is regarded as one of effective methods to extract urban road network from high spatial resolution satellite images.

  • PDF

Visualizing Geographical Contexts in Social Networks

  • Lee, Yang-Won;Kim, Hyung-Joo
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.391-401
    • /
    • 2006
  • We propose a method for geographically enhanced representation of social networks and implement a Web-based 3D visualization of geographical contexts in social networks. A renovated social network graph is illustrated by using two key components: (i) GWCMs (geographically weighted centrality measures) that reflect the differences in interaction intensity and spatial proximity among nodes and (ii) MSNG (map-integrated social network graph) that incorporates the GWCMs and the geographically referenced arrangement of nodes on a choroplethic map. For the integrated 3D visualization of the renovated social network graph, we employ X3D (Extensible 3D), a standard 3D authoring tool for the Web. An experimental case study of regional R&D collaboration provides a visual clue to geographical contexts in social networks including how the social centralization relates to spatial centralization.

  • PDF