• Title/Summary/Keyword: Spatial image correction

Search Result 130, Processing Time 0.025 seconds

Sub-Pixel Analysis of Hyperspectral Image Using Linear Spectral Mixing Model and Convex Geometry Concept

  • Kim, Dae-Sung;Kim, Yong-Il;Lim, Young-Jae
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In the middle-resolution remote sensing, the Ground Sampled Distance (GSD) that the detector senses and samples is generally larger than the actual size of the objects (or materials) of interest, and so several objects are embedded in a single pixel. In this case, as it is impossible to detect these objects by the conventional spatial-based image processing techniques, it has to be carried out at sub-pixel level through spectral properties. In this paper, we explain the sub-pixel analysis algorithm, also known as the Linear Spectral Mixing (LSM) model, which has been experimented using the Hyperion data. To find Endmembers used as the prior knowledge for LSM model, we applied the concept of the convex geometry on the two-dimensional scatter plot. The Atmospheric Correction and Minimum Noise Fraction techniques are presented for the pre-processing of Hyperion data. As LSM model is the simplest approach in sub-pixel analysis, the results of our experiment is not good. But we intend to say that the sub-pixel analysis shows much more information in comparison with the image classification.

  • PDF

Analysis for Forest Fire Damage Severity Map in Cheongyang

  • Jung Tae-Woong;Yoon Bo-Yeol;Yoo Jae-Wook;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.537-540
    • /
    • 2004
  • Space-borne multi-sensor data could provide fire scar and bum severity mapping. This paper will present detail mapping of burnt areas in Cheongyange Yesan of Korea with ETM+ image. Burn severity map based on ETM+ image was found to be affected by strong topographic illumination effects in mountainous forest area. Topographic effect is a factor which causes errors in classification of high spatial resolution image like IKONOS image. Minnaert constants J( in each band of ETM+ image is derived for reduction of mountainous terrain effects. Finally, this paper computes quantitative analysis of forest fire damage by each forest types.

  • PDF

A Study on geometric correction using GCP (지상기준점을 이용한 TIN기반 기하보정방법에 관한 연구)

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.115-122
    • /
    • 2002
  • The mainly used technique to rectify satellite images with distortion is to develop a mathematical relationship between the pixel coordinates on the image and the corresponding points on the ground. By defining the relationship between two coordinate systems, a polynomial model is designed and various linear transformations are used. These GCP based geometric correction has performed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The highly variant height of region is resampled with distortion in the rectified image. To solve this problem, this paper proposed the TIN-based rectification on a satellite image. The TIN based rectification is good to correct local distortion, but insufficient to reflect overall structure of one scene. So, this paper shows the experimental result and the analysis of each rectification model. It also describes the relationship GCP distribution and rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

  • PDF

Baseline Correction in Computed Radiography Images with 1D Morphological Filter (CR 영상에서 기저선 보정을 위한 1차원 모폴로지컬 필터의 이용에 관한 연구)

  • Kim, Yong-Gwon;Ryu, Yeunchul
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.397-405
    • /
    • 2022
  • Computed radiography (CR) systems, which convert an analog signal recorded on a cassette into a digital image, combine the characteristics of analog and digital imaging systems. Compared to digital radiography (DR) systems, CR systems have presented difficulties in evaluating system performance because of their lower detective quantum efficiency, their lower signal-to-noise ratio (SNR), and lower modulation transfer function (MTF). During the step of energy-storing and reading out, a baseline offset occurs in the edge area and makes low-frequency overestimation. The low-frequency offset component in the line spread function (LSF) critically affects the MTF and other image-analysis or qualification processes. In this study, we developed the method of baseline correction using mathematical morphology to determine the LSF and MTF of CR systems accurately. We presented a baseline correction that used a morphological filter to effectively remove the low-frequency offset from the LSF. We also tried an MTF evaluation of the CR system to demonstrate the effectiveness of the baseline correction. The MTF with a 3-pixel structuring element (SE) fluctuated since it overestimated the low-frequency component. This overestimation led the algorithm to over-compensate in the low-frequency region so that high-frequency components appeared relatively strong. The MTFs with between 11- and 15-pixel SEs showed little variation. Compared to spatial or frequency filtering that eliminated baseline effects in the edge spread function, our algorithm performed better at precisely locating the edge position and the averaged LSF was narrower.

Seamline Detection for Image Mosaicking with Image Pyramid (영상 피라미드 기반 영상 모자이크를 위한 접합선 추출)

  • Eun-Jin Yoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.268-274
    • /
    • 2023
  • Image mosaicking is one of the basic and important technologies in the field of application using images. The key of image mosaicking is to extract seamlines from a joint image. The method proposed in this paper for image mosaicking is as follows. The feature points of the images to be joined are extracted and the joining form between the two images is identified. A reference position for detection the seamlines were selected according to the joint form, and an image pyramid was created for efficient image processing. The outlines of the image including buildings and roads are extracted from the overlapping area with low resolution, and the seamlines are determined by considering the components of the outlines. Based on this, the seamlines in the high-resolution image was re-searched and finally the seamline for image mosaicking was determined. In addition, in order to minimize color distortion of the image with the determined seamline, a method of improving the quality of the mosaic image by fine correction of the mosaic area was applied. It was confirmed that the quality of the seamline extraction results applying the method proposed was reasonable.

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

A Study on the Improvement of UAV based 3D Point Cloud Spatial Object Location Accuracy using Road Information (도로정보를 활용한 UAV 기반 3D 포인트 클라우드 공간객체의 위치정확도 향상 방안)

  • Lee, Jaehee;Kang, Jihun;Lee, Sewon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.705-714
    • /
    • 2019
  • Precision positioning is necessary for various use of high-resolution UAV images. Basically, GCP is used for this purpose, but in case of emergency situations or difficulty in selecting GCPs, the data shall be obtained without GCPs. This study proposed a method of improving positional accuracy for x, y coordinate of UAV based 3 dimensional point cloud data generated without GCPs. Road vector file by the public data (Open Data Portal) was used as reference data for improving location accuracy. The geometric correction of the 2 dimensional ortho-mosaic image was first performed and the transform matrix produced in this process was adopted to apply to the 3 dimensional point cloud data. The straight distance difference of 34.54 m before the correction was reduced to 1.21 m after the correction. By confirming that it is possible to improve the location accuracy of UAV images acquired without GCPs, it is expected to expand the scope of use of 3 dimensional spatial objects generated from point cloud by enabling connection and compatibility with other spatial information data.

An Implementation of Real-time Image Warping Using FPGA (FPGA를 이용한 실시간 영상 워핑 구현)

  • Ryoo, Jung Rae;Lee, Eun Sang;Doh, Tae-Yong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.335-344
    • /
    • 2014
  • As a kind of 2D spatial coordinate transform, image warping is a basic image processing technique utilized in various applications. Though image warping algorithm is composed of relatively simple operations such as memory accesses and computations of weighted average, real-time implementations on embedded vision systems suffer from limited computational power because the simple operations are iterated as many times as the number of pixels. This paper presents a real-time implementation of a look-up table(LUT)-based image warping using an FPGA. In order to ensure sufficient data transfer rate from memories storing mapping LUT and image data, appropriate memory devices are selected by analyzing memory access patterns in an LUT-based image warping using backward mapping. In addition, hardware structure of a parallel and pipelined architecture is proposed for fast computation of bilinear interpolation using fixed-point operations. Accuracy of the implemented hardware is verified using a synthesized test image, and an application to real-time lens distortion correction is exemplified.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

PARALLEL IMAGE RECONSTRUCTION FOR NEW VACUUM SOLAR TELESCOPE

  • Li, Xue-Bao;Wang, Feng;Xiang, Yong Yuan;Zheng, Yan Fang;Liu, Ying Bo;Deng, Hui;Ji, Kai Fan
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Many advanced ground-based solar telescopes improve the spatial resolution of observation images using an adaptive optics (AO) system. As any AO correction remains only partial, it is necessary to use post-processing image reconstruction techniques such as speckle masking or shift-and-add (SAA) to reconstruct a high-spatial-resolution image from atmospherically degraded solar images. In the New Vacuum Solar Telescope (NVST), the spatial resolution in solar images is improved by frame selection and SAA. In order to overcome the burden of massive speckle data processing, we investigate the possibility of using the speckle reconstruction program in a real-time application at the telescope site. The code has been written in the C programming language and optimized for parallel processing in a multi-processor environment. We analyze the scalability of the code to identify possible bottlenecks, and we conclude that the presented code is capable of being run in real-time reconstruction applications at NVST and future large aperture solar telescopes if care is taken that the multi-processor environment has low latencies between the computation nodes.