• Title/Summary/Keyword: Spatial gradient

Search Result 330, Processing Time 0.022 seconds

Spatial-temporal distribution of carabid beetles in wetlands

  • Do, Yu-No;Jo, Hyun-Bin;Kang, Ji-Hoon;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • In this study, we investigated carabid beetles residing in the wetlands to understand their ecological adaptation and strategy selection associated with restricted resources and habitat limitation. The species richness, abundance, seasonal activity, and spatial distribution of the carabid beetles between the Mujechi Wetlands (wetland sites) and Mt. Jeongjok (mountain sites) have been compared. A total of 1,733 individual beetles from 30 species were collected and classified at the studied sites. The wetland sites were identified as having lower species richness and abundance for carabid beetles when compared with the adjacent mountain sites, whereas these beetles were observed to be dominant in the wetland sites than in the adjacent mountain sites. Calosoma inquisitor cyanescens, Carabus sternbergi sternbergi, and Carabus jankowskii jankowskii species were dominant in both the wetland and mountain sites. These species showed significantly different seasonal activity patterns in the wetland sites relative to the mountain sites. Although the three listed carabid species were observed to be widely distributed throughout the wetland sites, they still showed preference for drier sites, which clearly shows a distinction in their habitats. The results of the spatial-temporal distribution of carabid beetles in the wetland sites reflect their special strategies regarding space and time partitioning for maintaining their population. The distribution patterns of carabid beetles in the wetland sites also showed the desiccation gradient and environmental changes prevalent in wetlands. Ecological surveys, which use carabid beetles in the wetlands, can then be performed when restoring wetlands and for establishing management practices for improving the habitat quality.

Spatial Distributions of Macrozoobenthic Communities in the Seomjin River Estuary (섬진강 하구역에 서식하는 대형저서동물군집의 분포양상)

  • Seo, Jin-Young;Kim, Jung-Hyun;Choi, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • This study was carried out to investigate the spatial distributions of the macrobenthic communities in the Seomjin River estuary from May, 2015 to May, 2016. The number of species was 163, the mean density was $1,865ind.m^{-2}$, biomass was $204g{\cdot}wet\;m^{-2}$ during this study period. The highest number of species and density appeared among polychaetes whereas the most biomass was contributed by mollusks due to the presence of Corbicula japonica in every season. The study area was divided into 3 regions with similar benthic fauna responding to the gradient of the salinity. Praxillella praetermissa was the dominant species in regions of over 30 psu during all seasons. C. japonica and Hediste diadroma were dominant in the upper regions of the Seomjin River where the salinity was less than 10 psu. Heteromastus filiformis showed the broadest distributional range and dominated in all seasons except for the most upper stream at st. 7. From the result of the Bio-Env analysis, salinity was the most important environmental factor affecting the formation of macrobenthic communities in the study area, and salinity and TOC were the highest contributors to the macrobenthic communities. From the correlation analysis between major dominant species and environmental factors, C. japonica, Prionospio japonica and H. diadroma showed a negative correlation with salinity, while P. praetermissa and Scolectoma longifolia showed a positive correlation. H. filiformis was little affected by salinity but showed a positive correlation with TOC or silt content of sediment.

Temporal and spatial analysis of SST and thermal fronts in the North East Asia Seas using NOAA/AVHRR data

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.831-835
    • /
    • 2006
  • NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of $10{\sim}25^{\circ}C$. Annual amplitudes and phases were $4{\sim}11^{\circ}C$ and $210{\sim}240^{\circ}$, respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El $Ni{\tilde{n}}o$. The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

  • PDF

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

A Study on Calculation of Readjustment Height of Urban Region by Geo-spatial Information System - Focused on the Region of YOUNGDO-GU, PUSAN- (지형공간정보체계를 이용한 도시지역의 정지표고 산정에 관한 연구 -부산시 영도구 지역을 중심으로-)

  • 박운용;차성렬;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.119-129
    • /
    • 1994
  • Geo-spatial information system covers a wide range of applications and technologies and is of great potential interest to many users in government, industry and science. In many civil engineering problems it is necessary to model a landform in order to be able to removed or to be brought in to make the site ready for the proposed developed. The earthwork volume, could be calculated by the trapezoidal formula, Simpson's 1/3 and 3/8 rules. And slope is defined by a plane tangent to the surface as modelled by the digital terrain model at any given point and comprises two components namely, gradient, the maximum rate of change altitude, and aspect, the compass direction of this maximum rate of change. The thesis is the earthwork volume could be counted, readjustment height, slope and aspect analysis of various derived products can be obtained form geo-spatial informations.

  • PDF

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea (한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자)

  • Lim, Dhong-Il;Kim, Young-Ok;Kang, Mi-Ran;Jang, Pung-Kuk;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

Analysis of Spatial-temporal Variability of NOAA/AVHRR NDVI in Korea (NOAA/AVHRR 정규식생지수의 시공간 변화도 분석)

  • Kim, Gwangseob;Kim, Jong Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.295-303
    • /
    • 2010
  • The variability of vegetation is strongly related to the variability of hydrometeorological factors such as precipitation, temperature, runoff and so on. Analysis of the variability of vegetation will aid to understand the regional impact of climate change. Thus we analyzed the spatial-temporal variability of NOAA(National Oceanic and Atmospheric Administration)/AVHRR(Advanced Very High Resolution Radiometer) NDVI(Normalized Difference Vegetation Index). In the results from Mann-Kendall test, there is no significant linear trend of annual NDVI from 1982 to 2006 in the most area except the downward trend on the significance level 90% in the Guem-river basin area. In addition, using EOF(Empirical Orthogonal Function) analysis, the variability of NDVI in the region of higher latitude and altitude is higher than that in the other region since the spatial variability of NDVI follows the latitudinal gradient. Also we could get higher NDVI in June, July, August and September. We had the highest NDVI in Han-river basin area and the lowest in Je-Ju island.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

Using Mechanical Learning Analysis of Determinants of Housing Sales and Establishment of Forecasting Model (기계학습을 활용한 주택매도 결정요인 분석 및 예측모델 구축)

  • Kim, Eun-mi;Kim, Sang-Bong;Cho, Eun-seo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.181-200
    • /
    • 2020
  • This study used the OLS model to estimate the determinants affecting the tenure of a home and then compared the predictive power of each model with SVM, Decision Tree, Random Forest, Gradient Boosting, XGBooest and LightGBM. There is a difference from the preceding study in that the Stacking model, one of the ensemble models, can be used as a base model to establish a more predictable model to identify the volume of housing transactions in the housing market. OLS analysis showed that sales profits, housing prices, the number of household members, and the type of residential housing (detached housing, apartments) affected the period of housing ownership, and compared the predictability of the machine learning model with RMSE, the results showed that the machine learning model had higher predictability. Afterwards, the predictive power was compared by applying each machine learning after rebuilding the data with the influencing variables, and the analysis showed the best predictive power of Random Forest. In addition, the most predictable Random Forest, Decision Tree, Gradient Boosting, and XGBooost models were applied as individual models, and the Stacking model was constructed using Linear, Ridge, and Lasso models as meta models. As a result of the analysis, the RMSE value in the Ridge model was the lowest at 0.5181, thus building the highest predictive model.

Morphometric Characteristics of Alluvial Fans in South Korea and Comparisons with those of Japan, Taiwan and the Philippines (한반도 남부 선상지의 계량적 지형 특성과 일본, 타이완, 필리핀 선상지와의 비교 연구)

  • Yoon, Soon-Ock;Saito, Kyoji;Hwang, Sang-Ill;Oguchi, Takashi;Tanaka, Yukiya
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.4
    • /
    • pp.431-443
    • /
    • 2010
  • The morphometric characteristics of 13 alluvial fans in the southern parts of the Korean Peninsula are studied and relationships between their distributions and causes are discussed by comparing them with 690 alluvial fans in Japan, Taiwan and the Philippines. The relationships between the surface gradient of alluvial fans and source basin area, the surface gradient and the relief ratio of the source basin, and the source basin area and the relief ratio were investigated. The alluvial fans in South Korea have typical characteristics of the Asian fans, although their frequency and density are relatively low, and the size and the relief ratio of their source basins are relatively small and steep, respectively. Moreover 36 major Korean river basins without alluvial fans tend to have lower altitude and relief ratios. Contrary to the argument by Blair and McPherson, the natural depositional gaps on the gradient of alluvial fans were not found. The Gyeongju alluvial fan is probably a fluvial fan with gentle gradient, whereas the other Korean fans seem to be debris-flow related on the base of their gradients.