• Title/Summary/Keyword: Spatial gradient

Search Result 331, Processing Time 0.021 seconds

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

A Neuro-Fuzzy Controller for Xenon Spatial Oscillations in Load-Following Operation

  • Na, Man-Gyun;Belle R. Upadhyaya
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.299-304
    • /
    • 1997
  • A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent mettled. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control of mettled exhibits very fast responses to a step or a ramp change of target axial offset without any residual flux oscillations.

  • PDF

A Geological Study on the Seoul-Dongducheun Lineament Using Digital Image Processing Teachniques of Landsat Data (LANDSAT DATA의 映像處理手法에 의한 서울-東豆川 간의 LINEAMENT 硏究)

  • 姜必鍾;智光薰;曺民肇;崔映燮
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.39-51
    • /
    • 1985
  • The study was emphasized on application of the digital image processing techniques for lineament analysis. The major lineament of the study area belongs to Choogaryong faults which many geologists have studied since 1903. Also the lineament is so significant in geological views, because the lineament runs through Seoul area. The several image processing methods such as gradient, Laplacian and spatial filter have been applied, and the spatial filtering is most suitable method for lineament analysis among them. The lineaments distribute predominently in the N20.deg.-30.deg.E trend and N80.deg.-90.deg.W trend which have the conjugated relationship each other, and it coincides with the Gyeongsang conjugate system. The circular structure of study area was developed by cooling circular joint.

Entropic Image Thresholding Segmentation Based on Gabor Histogram

  • Yi, Sanli;Zhang, Guifang;He, Jianfeng;Tong, Lirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2113-2128
    • /
    • 2019
  • Image thresholding techniques introducing spatial information are widely used image segmentation. Some methods are used to calculate the optimal threshold by building a specific histogram with different parameters, such as gray value of pixel, average gray value and gradient-magnitude, etc. However, these methods still have some limitations. In this paper, an entropic thresholding method based on Gabor histogram (a new 2D histogram constructed by using Gabor filter) is applied to image segmentation, which can distinguish foreground/background, edge and noise of image effectively. Comparing with some methods, including 2D-KSW, GLSC-KSW, 2D-D-KSW and GLGM-KSW, the proposed method, tested on 10 realistic images for segmentation, presents a higher effectiveness and robustness.

Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis

  • Guo, Yan;Zhang, Jinliang;Deng, Changyan;Zhu, Nengwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1045-1054
    • /
    • 2012
  • The phylogenetic diversity of the bacteria in hot composting samples collected from three spatial locations was investigated by molecular tools in order to determine the influence of gradient effect on bacterial communities during the thermophilic phase of composting swine manure with rice straw. Total microbial DNA was extracted and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. The superstratum sample had the highest microbial diversity among the three samples which was possibly related to the surrounding conditions of the sample resulting from the location. The results showed that the sequences related to Bacillus sp. were most common in the composts. In superstratum sample, 45 clones (33%) and 36 clones (27%) were affiliated with the Bacillus sp. and Clostridium sp., respectively; 74 clones (58%) were affiliated with the Clostridium sp. in the middle-level sample; 52 clones (40%) and 29 clones (23%) were affiliated with the Clostridium sp. and Bacillus sp. in substrate sample, respectively. It indicated that the microbial diversity and community in the samples were different for each sampling site, and different locations of the same pile often contained distinct and different microbial communities.

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.

Prediction of spatial distribution of air pollutants within tunnel (터널 내 대기오염물질의 공간분포 예측)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Beom-Seok;Kang, Ho-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The need for management of tunnel air quality is imminent considering the rapid increase of number and span of tunnels in Korea. To investigate spatial distribution of $CO_2$ within tunnels, $CO_2$ were measured and model simulations were performed in Namsan 1 tunnel. Results show that $CO_2$ concentrations were 250 ppm to 400 ppm higher in the exit than tunnel entrance. Also, $CO_2$ concentrations were 200 ppm to 300 ppm lower inside no ventilating vehicle than in the tunnel. Both experimental and model simulation results show that spatial distribution and concentration gradient of air pollutant inside tunnel are highly dependent on traffic density.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Radiofrequency Coil Design for in vivo Sodium Magnetic Resonance Imaging of Mouse Kidney at 9.4T

  • Lim, Song-I;Woo, Chul-Woong;Kim, Sang-Tae;Choe, Bo-Young;Woo, Dong-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • The objective of this study was to describe a radiofrequency (RF) coil design for in vivo sodium magnetic resonance imaging (MRI) for use in small animals. Accumulating evidence has indicated the importance and potential of sodium imaging with improved magnet strength (> 7T), faster gradient, better hardware, multi-nucleus imaging methods, and optimal coil design for patient and animal studies. Thus, we developed a saddle-shaped sodium volume coil with a diameter/length of 30/30 mm. To evaluate the efficiency of this coil, bench-level measurement was performed. Unloaded Q value, loaded Q value, and ratio of these two values were estimated to be 352.8, 211.18, and 1.67, respectively. Thereafter, in vivo acquisition of sodium images was performed using normal mice (12 weeks old; n = 5) with a two-dimensional gradient echo sequence and minimized echo time to increase spatial resolution of images. Sodium signal-to-noise ratio in mouse kidneys (renal cortex, medulla, and pelvis) was measured. We successfully acquired sodium MR images of the mouse kidney with high spatial resolution (approximately 0.625 mm) through a combination of sodium-proton coils.

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.