• Title/Summary/Keyword: Spatial demultiplexing

Search Result 12, Processing Time 0.015 seconds

An MCS Level Adaptive Linear Receiver (MCS 레벨에 따른 적응 선형 수신기)

  • Lee, Kyuhee;Kim, Jaekwon;Yun, Sangkyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • In this paper, a novel low complexity linear receiver is proposed that is used at the receiver of MIMO systems. Zero-forcing (ZF) and minimum mean squared error (MMSE) receivers are common linear receivers. ZF receiver is simpler than MMSE receiver from the hardware implementation perspective, howerver, MMSE shows better performance than ZF. In general, MCS level changes according to channel condition. This paper shows the benefit of choosing between MMSE and ZF according to the selected MCS level. We implement the MCS-adaptive linear receiver as hardware, and show that its complexity is comparable to the conventional MMSE receiver.

  • PDF

A Channel Estimation and Detection Method for Multi-Cell Signals Using the PN Sequence Pilot in Time-Varying Channel Environments (시변 채널 환경에서 PN 수열 파일럿을 활용한 다중 셀 신호의 채널 추정 및 검출 방법)

  • Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.351-360
    • /
    • 2008
  • In cellular mobile radio systems with frequency reuse, the interference signals degrade the channel estimation and signal detection performance due to the low signal-to-interference ratio near coverage boundaries. When the preamble pilot sequences from different cells are orthogonal or located in disjointed positions, they can be used for multi-cell channel estimation and interference cancellation. In time-varying channels caused by Doppler spread, data pilot symbols are needed for channel estimations. However, data pilot symbols are usually located in identical positions for the overhead reduction, which degrades the channel estimation performance. In this paper, we demonstrate a significant amount of performance improvement is achieved by multiplying different pseudonoise(PN) sequences to the data pilot symbols from adjacent interference cells. In particular, for detection scheme using maximal ratio combining(MRC) and inter-cell spatial demultiplexing(ISD), quantitative performance gain of spectral efficiency for different values of Doppler frequency and interference power is presented.