• Title/Summary/Keyword: Spatial and Temporal Parameters

Search Result 285, Processing Time 0.032 seconds

TEMPORAL AND SPATIAL VARIATIONS OF THE ATMOSPHERIC DIFFUSE LIGHT

  • Kwon, Suk-Min
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.141-160
    • /
    • 1989
  • In order to derive time dependence of the atmospheric diffuse light, which consists of the airglow continuum emission and diffusely scattered radiations of the intergrated starlight, the diffuse Galactic light, and the zodiacal light, we have analyzed the meridian scan observations of the sky brightness at $5,080\;{\AA}$ and $5,300\;{\AA}$. Amplitude of the time-variation becomes larger for lower elevation, and maximum amplitude is found to be about $50\;S_{10}(V)_{G2V}$ at elevation $10^{\circ}$. The atmospheric diffuse radiation attains maximum brightness at around midnight, and afterward it decreases slowly with time. The time-variations for the two wavelengths are similar to each other. The observed brightness distribution of the diffuse light along the zenith distance is fitted to an empirical relation of two parameters. By making the two parameters time-dependent, we describe the spatial and time variations of the atmospheric diffuse light. This enables us to make time dependent correction for the atmospheric diffuse component in the reduction of zodiacal light brightness.

  • PDF

A Development of Auto-Calibration for Initial Soil Condition in K-DRUM Model (K-DRUM 개선을 위한 초기토양함수 자동보정기법 개발)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.

  • PDF

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Estimation of the Number of Sampling Points Required for the Determination of Soil CO2 Efflux in Two Types of Plantation in a Temperate Region

  • Lee, Na-Yeon(Mi-Sun);Koizumi, Hiroshi
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2009
  • Soil $CO_2$ efflux can vary markedly in magnitude over both time and space, and understanding this variation is crucial for the correct measurement of $CO_2$ efflux in ecological studies. Although considerable research has quantified temporal variability in this flux, comparatively little effort has focused on its spatial variability. To account for spatial heterogeneity, we must be able to determine the number of sampling points required to adequately estimate soil $CO_2$ efflux in a target ecosystem. In this paper, we report the results of a study of the number of sampling points required for estimating soil $CO_2$ efflux using a closed-dynamic chamber in young and old Japanese cedar plantations in central Japan. The spatial heterogeneity in soil $CO_2$ efflux was significantly higher in the mature plantation than in the young stand. In the young plantation, 95% of samples of 9 randomly-chosen flux measurements from a population of 16 measurements made using 72-$cm^2$ chambers produced flux estimates within 20% of the full-population mean. In the mature plantation, 20 sampling points are required to achieve means within $\pm$ 20% of the full-population mean (15 measurements) for 95% of the sample dates. Variation in soil temperature and moisture could not explain the observed spatial variation in soil $CO_2$ efflux, even though both parameters are a good predictor of temporal variation in $CO_2$ efflux. Our results and those of previous studies suggest that, on average, approximately 46 sampling points are required to estimate the mean and variance of soil $CO_2$ flux in temperate and boreal forests to a precision of $\pm$ 10% at the 95% confidence level, and 12 points are required to achieve a precision of $\pm$ 20%.

Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding (H.264 SVC에서 비트 스트림 추출을 위한 공간과 시간 해상도 선택 기법)

  • Kim, Nam-Yun;Hwang, Ho-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 2010
  • H.264 SVC(Scalable Video Coding) provides the advantages of low disk storage requirement and high scalability. However, a streaming server or a user terminal has to extract a bit stream from SVC file. This paper proposes a bit stream extraction method which can get the maximum PSNR value while date bit rate does not exceed the available network bandwidth. To do this, this paper obtains the information about extraction points which can get the maximum PSNR value offline and decides the spatial/temporal resolution of a bit stream at run-time. This resolution information along with available network bandwidth is used as the parameters to a bit stream extractor. Through experiment with JSVM reference software, we proved that proposed bit stream extraction method can get a higher PSNR value.

Cluster and information entropy analysis of acoustic emission during rock failure process

  • Zhang, Zhenghu;Hu, Lihua;Liu, Tiexin;Zheng, Hongchun;Tang, Chun'an
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • This study provided a new research perspective for processing and analyzing AE data to evaluate rock failure. Cluster method and information entropy theory were introduced to investigate temporal and spatial correlation of acoustic emission (AE) events during the rock failure process. Laboratory experiments of granite subjected to compression were carried out, accompanied by real-time acoustic emission monitoring. The cumulative length and dip angle curves of single links were fitted by different distribution models and distribution functions of link length and directionality were determined. Spatial scale and directionality of AE event distribution, which are characterized by two parameters, i.e., spatial correlation length and spatial correlation directionality, were studied with the normalized applied stress. The entropies of link length and link directionality were also discussed. The results show that the distribution of accumulative link length and directionality obeys Weibull distribution. Spatial correlation length shows an upward trend preceding rock failure, while there are no remarkable upward or downward trends in spatial correlation directionality. There are obvious downward trends in entropies of link length and directionality. This research could enrich mathematical methods for processing AE data and facilitate the early-warning of rock failure-related geological disasters.

Fuzzy Quantization and Rate Control for Very Low Bit­rate Video Coder (초저전송율 동영상 부호기를 위한 퍼지 양자화 및 율 제어에 관한 연구)

  • 양근호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1684-1690
    • /
    • 2003
  • In this paper, we proposed a fuzzy controller for the evaluation of the quantization Parameters in the H.263 coder to optimize the subjective quality of each coded frame, keeping the transmission rate constant. We adopted the Mamdani method for fuzzification and the centroid method for defuzzification. The energy and entropy are correlated to features of the HVS in spatial domain, while motion vectors are used to estimate the temporal characteristics of the signal. And then, the fuzzy inputs adapted the variance and the entropy in spatial domain, and the motion vector in temporal domain. We induced the fuzzy membership function and decided the fuzzy relevance to be compatible in visual characteristics. And then, we designed FAM banks. The fuzzy technology has been applied to a practical video compression. This results is obtained an effective rate control technique, an optimum bit allocation and a high subjective quality using fuzzy quantization.

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Changes of Hemodynamic Characteristics during Angulated Stenting in the Stenosed Coronary (관상동맥 협착부에 각이진 스텐트 시술시 혈류역학적 특성변화)

  • Suh Sang-Ho;Cho Min-Tae;Kwon Hyuck-Moon;Lee Byung-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.717-720
    • /
    • 2002
  • The present study is to evaluate the performances of flow velocity and wall shear stress in the stenosed coronary artery using human in vivo hemodynamic Parameters and computer simulation. Initial and follow-up coronary angiographics in the patients with angulated coronary stenosis are performed. Follow-up coronary angiogram demonstrated significant difference in the percent of diameter in the stenosed coronary between two groups ($Group\;1:\;40.3{\%},\;Group\;2:\;25.5{\%}$). Flow-velocity wave obtained from in vivo intracoronary Doppler ultrasound data is used for the boundary condition for the computer simulation. Spatial and temporal variations of flow velocity vector and recirculation area are drawn throughout the selected segment of coronary models. The WSS of pre- and post-intracoronary stenting are calculated from three-dimensional computer simulation. Then negative shear stresses area on 3D simulation we noted on the inner wall of the post-stenotic area before stenting. The negative WSS is disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2. The present study suggest that hemodynamic forces exerted by pulsatile coronary circulation termed WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. The local recirculation area which has low or negative WSS, might lead to progression of atherosclerosis.

  • PDF

The Relation between asymmetric weight-supporting and gait symmetry in patients with stroke (뇌졸중 환자의 체중지지 비대칭과 보행 대칭성의 관련성)

  • Lee, Yong-Woo;Shin, Doo-Chul;Lee, Kyoung-Jin;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.205-212
    • /
    • 2012
  • Purpose : The aim of this study was to investigate the relationship between weight-supporting asymmetry and gait symmetry in patients with stroke. Methods : Sixty two stroke patients with hemiplegia stood quietly with eye opens on a force platform to calculate weight-supporting asymmetry from vertical reaction force. The GAITRite was used to evaluate their gait parameters. The data were analyzed using Pearson correlation. Results : The results of this study was showed that the medio-lateral index (ML) was correlated with symmetry rate (SR), symmetry index (SI), and Gait asymmetry (GA) of step time and length but stronger correlation with spatial gait symmetry than temporal symmetry. In gait symmetry, step length has stronger correlation with weight-supporting asymmetry than step time. Conclusions : The results of this study shows weight-supporting asymmetry was correlated with more spatial gait symmetry than temporal symmetry.