• Title/Summary/Keyword: Spatial and Temporal Parameters

Search Result 288, Processing Time 0.029 seconds

A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network (인공신경망을 이용한 대대전투간 작전지속능력 예측)

  • Shim, Hong-Gi;Kim, Sheung-Kown
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.25-39
    • /
    • 2008
  • The objective of this study is to forecast the operational continuous ability using Artificial Neural Networks in battalion defensive operation for the commander decision making support. The forecasting of the combat result is one of the most complex issue in military science. However, it is difficult to formulate a mathematical model to evaluate the combat power of a battalion in defensive operation since there are so many parameters and high temporal and spatial variability among variables. So in this study, we used company combat power level data in Battalion Command in Battle Training as input data and used Feed-Forward Multilayer Perceptrons(MLP) and General Regression Neural Network (GRNN) to evaluate operational continuous ability. The results show 82.62%, 85.48% of forecasting ability in spite of non-linear interactions among variables. We think that GRNN is a suitable technique for real-time commander's decision making and evaluation of the commitment priority of troops in reserve.

  • PDF

REMOTE SENSING OF THE CHINA SEAS AT ORSI/OUC

  • HE, Ming-Xia;Zeng, Kan;Chen, Haihua;Zhang, Tinglu;Hu, Lianbo;Liu, Zhishen;Wu, Songhua;Zhao, Chaofang;Guan, Lei;Hu, Chuanmin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.11-14
    • /
    • 2006
  • We present an overview on the observation and research for the China seas using both field experiments and multi-sensor satellite data at ORSI/OUC, covering two topics: (1) Spatial and temporal distribution of internal waves in the China Seas and retrieval of internal wave parameters; (2) Retrieval, validation, and cross-comparison of multi-sensor ocean color data as well as ocean optics in situ experiments in the East China Sea. We also present an incoherent Doppler wind lidar, developed by ORSI, and its observation for marine-atmospheric boundary layer.

  • PDF

A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines (국내폐탄광의 산성폐수 오염도 평가에 관한 연구)

  • 최우진
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 1997
  • Temporal and spatial comparisons of acid mine drainage contaminated waters are difficult because of the complex physico-chemical nature of the pollutant. In the present study, an acid mine drainage index has been developed and evaluated for the assessment of surface waters. AMD index is calculated using a modified arithmetic weighted index using seven parameters which are most indicative of AMD contamination, i. e. pH value, sulphate, iron, zinc, aluminum, copper and manganese. Weighting is used to express the relative indicator value of each parameter. The proposed AMD index is used to quantify contamination from acid mine drainage over ten different old mine sites and assess the degree of impact on surface on surface waters. As a result of AMD evaluation, the Sukbong Mine located near the Moonkyung province showed lowest AMD value indicating the worst acid mine drainage quality. In overall, Youngdong mine sites showed higher contaimination compared to the other mine sites including Youngsuh, Choongbu, Suhbu and Nambu area.

  • PDF

Measurement of Flickering Artifact for H.264 with Periodic I-Frame Structure (주기적 I-프레임 구조의 H.264 부호화 동영상을 위한 플리커링 측정 알고리즘)

  • Lim, Jong-Min;Kang, Dong-Wook;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.321-331
    • /
    • 2010
  • Most of multimedia video coding algorithms are lossy schemes and several kinds of spatial and temporal artifacts are inevitable. Flickering, which is the most typical coding artifact in time domain, is mainly due to fact that the quality of coded sequence fluctuates as the quantization parameter is adjusted for rate control. In this paper, we analyzed the effect of quality variation according to the characteristics of video sequence when the I-frames are periodically inserted. And we proposed the FR(Full Reference)-based assessment algorithm to measure the amount of flickering artifacts in the coded video. It is discovered that the flickering becomes critical when the level of quality is intermediate and is affected by the amount of detail or movement, the size of object, and camera parameters. The proposed measurement algorithm shows is well consistent with HVS(Human Visual System).

The improvement of gait asymmetry ratio for hemiplegic patients by forceful respiratory exercise (노력성 호흡운동에 의한 편마비환자의 보행 비대칭율 개선)

  • Kim Byung-Jo;Lee Hyun-Ok;Ahn So-Youn
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.4
    • /
    • pp.38-58
    • /
    • 2004
  • The regain of independent ambulatory ability is a important goal in the rehabilitation program of hemiplegic patient. Not only the function of lower extremity muscles, but also trunk muscles which stabilize extremities and pelvis, are important factors in normal gait. Therefor, it is necessary to develop an effective program which can improve muscle strength and symmetric activity of trunk muscles. The purpose of this study was to evaluate the influence of trunk muscle strengthening by forceful respiratory exercise on the gait asymmetry ratio in hemiplegic patient. 45 Hemiplegic patients due to stroke was randomized in 3 groups, forceful expiratory training(FET), forceful inspiratory training(FIT) and control group. In the experimental groups, ordinary physical therapy with forceful expiratory training and forceful inspiratory training for 20 minutes duration 3 times per week for 6 weeks were respectively performed. In the control group, only ordinary physical therapy was done. Before and after experiments, temporal-spatial gait parameters was measured in all patients. The data of 28 patients who carried out the whole experimental course were statistically analysed. The results of these experiment are as follows : 1. In comparison of difference of single support time asymmetry ratio among 3 groups, the FET group was significantly decreased than the control group (p<.05). 2. In comparison of difference of step length asymmetry ratio among 3 groups, the FIT group was significantly decreased than the control group (p<.05). Based on these results, it is concluded that the forced respiratory exercise program for 6 weeks can be improve the gait asymmetry ratio in hemiplegic patients. Therefore, the forced respiratory exercise is useful to improve the walking ability in hemiplegic patients. Since this study dealt only with the patients who could walk more than 3 meters in distance on floor independently, the further study for evaluating the influence of the forceful respiratory exercise on patients with acute stage stroke and also the development in various methods of use are expected.

  • PDF

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (II) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (II)-당량비가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1193-1201
    • /
    • 2004
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations fur typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). It was also shown that phase-resolved averaged temperature oscillated in phase with pressure cycle, while normalized standard deviations which represent temporal turbulent intensity of temperature showed nearly constant value around 0.1. The characteristics on the occurrence of high temperature also displayed periodic wave form which was very similar to the pressure signal. And the amplitude of this profile went larger as the fuel/air mixing quality became poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

The Effects of Balance Training with Visual Cue Deprivation on Gait Function in Patients with Stroke (시각차단 균형훈련이 뇌졸중 환자의 보행기능에 미치는 영향)

  • Moon, Sung-Jun;Kim, Yong-Wook;Kim, Tae-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.411-421
    • /
    • 2012
  • PURPOSE: The purpose of this study was to investigate the effect of balance rehabilitation training with the visual cue deprivation on gait function in stroke patients in comparison with balance training without the visual cue deprivation. METHODS: Twenty two stroke patients participated in this study. Patients were randomly assigned to one of the two balance training program with and without the visual cue deprivation. Balance training session for each group lasted 50 minutes, 3 times a week for a total of 6 weeks. Gait function was measured with the Functional Gait Assessment (FGA), the self-selective comfortable gait speed (CGS), the maximal gait speed (MGS), and the Gait Analysis System. Temporal and spatial gait parameters of each evaluation were measured before and after the balance training program respectively. RESULTS: After the program, the visual cue deprivation group improved significantly in the FGA, the CGS, the gait velocity, the step time, the step length, the stride length, and the Functional Ambulation Performance (FAP) in comparison with the balance training group with the visual cue (p<.05). CONCLUSION: The gait function of the participants with the visual cue deprivation showed more improvement after the balance training program compared to the patients group without the visual cue deprivation, Therefore, the balance training program with the visual cue deprivation may be useful for rehabilitation of patients with chronic stroke.

Mapping of Areal Evapotranspiration by Remote Sensing and GIS Techniques (RS/GIS수법을 이용한 廣域蒸發散量의 추정)

  • 安忠鉉
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.65-80
    • /
    • 1995
  • Remote Sensing data with ancillary ground-based meteorological data provides the capalility of computing threeof the four surface energy balance components(i.e. net radiation, soil heat flux and sensible heat flux) at different spatial and temporal scales. As a result, this enablis the estimation of the remaining term, latent heat flux. One of the practical applications with this approach is to produce evapotranspiration maps over large areas. This results could estimate and reproduce areal evapotranspiration over large area as much as several hundred sequare kilometers. Moreover, some calculating simulations for the effects of the land use change on the surface heat flux has been made by this method, which is able to estimate evapotranspiration under arbitracy presumed condition. From the simulation of land use change, the results suggests that the land use change in study area can be produce the significant changes in surface heat flux. This preliminary research suggests that the future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface atmosphere interface for partical canopy conditions using remote sensing information.