• Title/Summary/Keyword: Spatial Time Adaptive

Search Result 115, Processing Time 0.012 seconds

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

Application of Nonuniform Weighted Distribution Method to Enhancing Signal Processing Effect of Subband Spatial-Temproral Adaptive Filter

  • Vuong Le Quoc;Tai Pham Trong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.97-102
    • /
    • 2004
  • The very complicated proplem in spatial processing is effects of phading (Multipath and Delay Spread) and co-channel interference (CCI). The phading is one of principal causes, that form inter-symbol interference (ISI). Spatial-Temproral Adaptive Filter (STAF) has been taken as a solution of this problem, because it can suppress both these types of interference. But the performance of STAF exposes some elemental limitations, in which are the slow convergence of adaptive process and computational complexity. The cause of this is that, STAF must treat a large quantity of information in both space and time. The way that master these limitation is a use of Subband Spatial-Temproral Adaptive Filter (SSTAF). SSTAF reduce computational complexity by pruning off samples of signal and thus it lost some information in time. This draw on attennation of output SINR of SSTAF. The article analyse a optimal solution of this problem by introducing SSTAF with nonuniform weighted distribution.

  • PDF

An adaptive control of spatial-temporal discretization error in finite element analysis of dynamic problems

  • Choi, Chang-Koon;Chung, Heung-Jin
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.391-410
    • /
    • 1995
  • The application of adaptive finite element method to dynamic problems is investigated. Both the kinetic and strain energy errors induced by space and time discretization were estimated in a consistent manner and controlled by the simultaneous use of the adaptive mesh generation and the automatic time stepping. Also an optimal ratio of spatial discretization error to temporal discretization error was discussed. In this study it was found that the best performance can be obtained when the specified spatial and temporal discretization errors have the same value. Numerical examples are carried out to verify the performance of the procedure.

Nonlinear Adaptive Controller for Robot Manipulator (로봇의 비선형 적응제어기 개발에 관한 연구)

  • 박태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.419-423
    • /
    • 1996
  • These days, industrial robots are required to have high speed and high precision in doing various tasks. Recently, the adaptive control algorithms for those nonlinear robots have been developed. With spatial vector space, these adaptive algorithms including recursive implementation are simply described. Without sensing joint acceleration and computing the inversion of inertia matrix, these algorithms which include P.D. terms and feedforward terms have global tracking convergence. In this paper, the feasibility of the proposed control method is illustrated by applying to 2 DOF SCARA robot in DSP(Digital Signal Processing).

  • PDF

Query System for Analysis of Medical Tomography Images (의료 단층 영상의 분석을 위한 쿼리 시스템)

  • Kim, Tae-Woo;Cho, Tae-Kyung;Park, Byoung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • We designed and implemented a medical image query system, including a relational database and DBMS (database management system), which can visualize image data and can achieve spatial, attribute, and mixed queries. Image data used in querying can be visualized in slice, MPR(multi-planner reformat), volume rendering, and overlapping on the query system. To reduce spatial cost and processing time in the system. brain images are spatially clustered, by an adaptive Hilbert curve filling, encoded, and stored to its database without loss for spatial query. Because the query is often applied to small image regions of interest(ROI's), the technique provides higher compression rate and less processing time in the cases.

  • PDF

Wideband Jamming Signal Remove Using Adaptive Array Algorithm (적응배열 알고리즘을 이용한 광대역 재밍 신호 제거)

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.419-424
    • /
    • 2019
  • In this paper, we proposed an algorithm to estimate the desired target in wideband jamming signal environment. In order to suppress the jamming signal, we use the spatial time adaptive algorithm and QR decomposition to obtain the optimal weight. The spatial time adaptive algorithm of adaptive array antenna system multiplies the tap delay signal by a complex weight to obtain a weight. In order to minimize the power consumption because of the inverse matrix, optimal weight is obtained by using QR decomposition. Through simulation, we compare and analyze the performance of the proposed algorithm and the existing algorithm. In the target estimation of [-40o,0o,+40o], the proposed algorithm estimated all three targets, but the existing algorithm estimated only [0o] due to of the jamming signal. We prove that the proposed algorithm improves performance by removing the jamming signal and estimating the target accurately.

Adaptive SDF filter design using the Widrow-Hoff learning rule (신경회로망의 학습규칙을 이용한 SDF 적응 필터 설계)

  • 김홍만
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.103-106
    • /
    • 1989
  • A method of adaptive formation of the synthetic discriminant function(SDF) both in image plane and spatial frequency plane by using the Widrow-Hoff learning rule is proposed. The proposed method uses minimum number of interconnections between neurons so it can reduce the time for learning the neural net. Also complex valued interconnection weights are introduced for the purposes of handling the phase objects or Fourier transformed spatial frequency objects which usually have complex values for the representation of not only amplitude but also phase information. Also methods of optical implementation for the complex valued interconnection weights are discussed.

  • PDF

View-Dependent Adaptive Animation of Liquids

  • Kim, Jang-Hee;Ihm, In-Sung;Cha, Deuk-Hyun
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.697-708
    • /
    • 2006
  • Various adaptive mesh refinement techniques are often employed in numerical simulations for increasing spatial and temporal resolution beyond the limits imposed by available CPU time and memory space. Recently, an octree-based adaptive mesh structure was successfully used in fluid animation to place more grid cells efficiently in visually interesting regions of fluids. In an attempt to optimize the use of computational resources further in fluid animation, this paper extends this adaptive technique by modifying the mesh refinement scheme so that the camera's viewing properties are dynamically exploited during the simulation. Based on a simple adaptive mesh structure, we show that the new meshing strategy can save a substantial amount of computation time and memory space by using a view-dependent adaptive approach. The experimental results reveal that the proposed technique provides a good compromise between the computational effort and the simulation's fidelity, and may be used quite effectively in 3D animation production.

  • PDF

An Efficient Adaptive Bitmap-based Selective Tuning Scheme for Spatial Queries in Broadcast Environments

  • Song, Doo-Hee;Park, Kwang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1862-1878
    • /
    • 2011
  • With the advances in wireless communication technology and the advent of smartphones, research on location-based services (LBSs) is being actively carried out. In particular, several spatial index methods have been proposed to provide efficient LBSs. However, finding an optimal indexing method that balances query performance and index size remains a challenge in the case of wireless environments that have limited channel bandwidths and device resources (computational power, memory, and battery power). Thus, mechanisms that make existing spatial indexing techniques more efficient and highly applicable in resource-limited environments should be studied. Bitmap-based Spatial Indexing (BSI) has been designed to support LBSs, especially in wireless broadcast environments. However, the access latency in BSI is extremely large because of the large size of the bitmap, and this may lead to increases in the search time. In this paper, we introduce a Selective Bitmap-based Spatial Indexing (SBSI) technique. Then, we propose an Adaptive Bitmap-based Spatial Indexing (ABSI) to improve the tuning time in the proposed SBSI scheme. The ABSI is applied to the distribution of geographical objects in a grid by using the Hilbert curve (HC). With the information in the ABSI, grid cells that have no objects placed, (i.e., 0-bit information in the spatial bitmap index) are not tuned during a search. This leads to an improvement in the tuning time on the client side. We have carried out a performance evaluation and demonstrated that our SBSI and ABSI techniques outperform the existing bitmap-based DSI (B DSI) technique.