• Title/Summary/Keyword: Spatial Regression Model

Search Result 381, Processing Time 0.026 seconds

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.

A Study on Factors Influencing the Severity of Autonomous Vehicle Accidents: Combining Accident Data and Transportation Infrastructure Information (자율주행차 사고심각도의 영향요인 분석에 관한 연구: 사고데이터와 교통인프라 정보를 결합하여)

  • Changhun Kim;Junghwa Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.200-215
    • /
    • 2023
  • With the rapid advance of autonomous driving technology, the related vehicle market is experiencing explosive growth, and it is anticipated that the era of fully autonomous vehicles will arrive in the near future. However, along with the development of autonomous driving technology, questions regarding its safety and reliability continue to be raised. Concerns among technology adopters are increasing due to media reports of accidents involving autonomous vehicles. To promote the improvement of the safety of autonomous vehicles, it is essential to analyze previous accident cases and identify their causes. Therefore, in this study, we aimed to analyze the factors influencing the severity of autonomous vehicle accidents using previous accident cases and related data. The data used for this research primarily comprised autonomous vehicle accident reports collected and distributed by the California Department of Motor Vehicles (CA DMV). Spatial information on accident locations and additional traffic data were also collected and utilized. Given that the primary data used in this study were accident reports, a Poisson regression analysis was conducted to model the expected number of accidents. The research results indicated that the severity of autonomous vehicle accidents increases in areas with low lighting, the presence of bicycle or bus-exclusive lanes, and a history of pedestrian and bicycle accidents. These findings are expected to serve as foundational data for the development of algorithms to enhance the safety of autonomous vehicles and promote the installation of related transportation infrastructure.

A Study on the Moderating Factors of the Relationship between Artwork Color Series and Visitor Satisfaction in Commercial Spaces (상업공간에서 미술품 색 계열과 방문객 만족도 관계의 조절요인에 관한 연구)

  • Wang, YeunJu;Lee, SeungHyun;Bae, JiHye;Kim, SunYoung
    • Korean Association of Arts Management
    • /
    • no.58
    • /
    • pp.121-152
    • /
    • 2021
  • This study attempted to analyze the effect of the color series of artworks installed as environmental stimuli in commercial spaces on the satisfaction of visitors and the moderating effect of the relationship. To this end, based on the SOR model of Stimulate-Organism-Response applied to burial environment research in the field of environmental psychology, and the preceding research using the SOR model, artwork color series(S)-mood and spaace amenity(O)-A research framework for satisfaction(R) was developed. In the experiment, an online questionnaire was conducted for domestic college students and graduate students by producing images with two conditions depending on the case where warm colors and cold colors were installed for the color series of artworks. As a result of verifying the difference in satisfaction of respondents corresponding to the two conditions through regression analysis, it was found that the warm color(vs. cold color) of the artwork color series induces higher visitor satisfaction. In addition, as a result of verifying the controlling factors of mood and space amenity variables in this relationship of influence, a significant moderating effect was found when the positive mood of warm colors(vs. cold colors) in the artwork color series was felt higher than the average. And, of the four types of space amenity, it was found that a significant moderating effect appeared when only comfort and aesthetics were measured as moderating variables. The result of this study proves that the warm color series of artworks that stimulate the physical environment of commercial spaces has a more positive effect on the satisfaction of visitors than the cold color series, and this is reinforced by positive mood, comfort, and aesthetics. It adds understanding and provides useful implications for marketing strategies for building an effective spatial image.

Comparing the Effects of the Access to the International School on Apartment Sales and Rental Prices: A Case of Songdo International School in Incheon (국제학교 입지가 아파트 매매 및 전월세 가격에 미치는 영향 비교·분석 -인천 송도국제도시 사례 -)

  • Kim, Yoon-Jae;Shin, Gwang-Mun;Lee, Jae-Su
    • Journal of the Korean Regional Science Association
    • /
    • v.38 no.4
    • /
    • pp.45-58
    • /
    • 2022
  • This study intends to compare the factors influencing the location of international schools on apartment sales and monthly rent prices for Songdo International School in Incheon, which has a history of more than 10 years. At the latest point, 10 years after the opening of the school, apartments in areas near international schools are divided into sales and monthly rent markets and analyzed. Songdo International City, designed as a planned city, was set as a spatial scope, and 2018-19, which is a relatively stable real estate period, was set as a temporal analysis period to avoid the overheating period of real estate after COVID-19. Considering the urban image of the "New Special Education Zone," such as the opening of Songdo Campus by private academies formed around international schools and domestic and foreign universities, the multiple regression model was applied based on the traditional Hedonic price model. As a result of the empirical analysis, first, differences in the price determinants of sales and monthly rent were confirmed. Second, the price influence of international schools was much higher than that of the variables. Third, the influence of international schools was more pronounced in the monthly rent market than in the sales market.

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.

The Factors Affecting the Population Outflow from Busan to the Seoul Metropolitan Area (지역별 수도권으로의 인구유출에 영향을 미치는 요인 연구: 부산시 사례를 중심으로)

  • LIM, Jaebin;Jeong, Kiseong
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.47-59
    • /
    • 2021
  • This study aims to review the trends of the population outflows in the metropolitan area of Busan and to investigate the factors that affect population out-migration to the Seoul metropolitan area. The following variables are considered for analysis: traditional population movement variables and quality of life variables, such as population, society, employment, housing, culture, safety, medical care, greenery, education, and childcare. The 'domestic population movement data', provided by the MDIS of the National Statistical Office, was used for this research. Out of the total of 57 million population movement data in the period 2012 - 2017, population outmigration from Busan to the Seoul metropolitan area was extracted. Independent variables were drawn from public data sources in accordance with the temporal and spatial settings of the study. The multiple linear regression model was specified based on the dataset, and the fit of the model was measured by the p-value, and the values of Adjusted R2, Durbin-Watson analysis, and F-statistics. The results of the analysis showed that the variables that have a significant effect on population movement from Busan to the Seoul metropolitan area were as follows: 'single-person households', 'the elderly population', 'the total birth rate', 'the number of companies', 'the number of employees', 'the housing sales price index', 'cultural facilities', and 'the number of students per teacher'. More positive (+) influences of the population out-movement were observed in areas with higher numbers of single-person households, lowers proportions of the elderly, lower numbers of businesses, higher numbers of employees, higher numbers of housing sales, lower numbers of cultural facilities, and lower numbers of students. The findings suggest that policies should enhance the environments such as quality jobs, culture, and welfare that can retain young people within Busan. Improvements in the quality of life and job creation are critical factors that can mitigate the outflows of the Busan residents to the Seoul metropolitan area.

Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle (무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.709-720
    • /
    • 2018
  • In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index ($E{\times}G$) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and $VF{\times}PH$) and above-ground dry weight provided good fits with coefficients of determination ($R^2$) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was $102.09g/m^2$. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was $110.87g/m^2$. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.

Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk (지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구)

  • Byun, Garam;Choi, Yongsoo;Gil, Junsu;Cha, Junil;Lee, Meehye;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.