• Title/Summary/Keyword: Spatial Regression Model

Search Result 381, Processing Time 0.028 seconds

Exploring Spatial Patterns of Theft Crimes Using Geographically Weighted Regression

  • Yoo, Youngwoo;Baek, Taekyung;Kim, Jinsoo;Park, Soyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The goal of this study was to efficiently analyze the relationships of the number of thefts with related factors, considering the spatial patterns of theft crimes. Theft crime data for a 5-year period (2009-2013) were collected from Haeundae Police Station. A logarithmic transformation was performed to ensure an effective statistical analysis and the number of theft crimes was used as the dependent variable. Related factors were selected through a literature review and divided into social, environmental, and defensive factors. Seven factors, were selected as independent variables: the numbers of foreigners, aged persons, single households, companies, entertainment venues, community security centers, and CCTV (Closed-Circuit Television) systems. OLS (Ordinary Least Squares) and GWR (Geographically Weighted Regression) were used to analyze the relationship between the dependent variable and independent variables. In the GWR results, each independent variable had regression coefficients that differed by location over the study area. The GWR model calculated local values for, and could explain the relationships between, variables more efficiently than the OLS model. Additionally, the adjusted R square value of the GWR model was 10% higher than that of the OLS model, and the GWR model produced a AICc (Corrected Akaike Information Criterion) value that was lower by 230, as well as lower Moran's I values. From these results, it was concluded that the GWR model was more robust in explaining the relationship between the number of thefts and the factors related to theft crime.

Analysis of Eunpyeong New Town Land Price Using Geographically Weighted Regression (지리가중회귀분석을 이용한 은평뉴타운 지가 분석)

  • Jung, Hyo-jin;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • Newtown Business of Seoul had been performed to reduce deterioration of Gangbuk and economic inequality between Gangnam and Gangbuk. According to this, Eunpyeong-gu was set as test-bed for Newtown business and Newtown business had been completed until 2013. This study aims to analyze the influence of social and economical factors which affect land price using GWR (Geographically Weighted Regression) considered spatial effect. As a result of analysis, GWR model demonstrated a better goodness-of-fit than OLS (Ordinary least square) model typically used in most study. Furthermore, AIC value and Moran's I of residual prove that GWR model is more suitable than OLS model. GWR model enable to explain more detailed than global regression model as coefficient and sign show different value locally. In future, this research will be helpful to develop Eunpyeong-gu considering spatial characters and strength effectiveness of development.

Geographically weighted kernel logistic regression for small area proportion estimation

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper we deal with the small area estimation for the case that the response variables take binary values. The mixed effects models have been extensively studied for the small area estimation, which treats the spatial effects as random effects. However, when the spatial information of each area is given specifically as coordinates it is popular to use the geographically weighted logistic regression to incorporate the spatial information by assuming that the regression parameters vary spatially across areas. In this paper, relaxing the linearity assumption and propose a geographically weighted kernel logistic regression for estimating small area proportions by using basic principle of kernel machine. Numerical studies have been carried out to compare the performance of proposed method with other methods in estimating small area proportion.

Spatial analysis for a real transaction price of land (공간회귀모형을 이용한 토지시세가격 추정)

  • Choi, Jihye;Jin, Hyang Gon;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.217-228
    • /
    • 2018
  • Since the real estate reporting system was first introduced, about 2 million real estate transaction per year have been reported over the last 10 years with an increasing demand for real estate price estimates. This study looks at the applicability and superiority of the regression-kriging method to derive effective real transaction prices estimation on the location where information about real transaction is unavailable. Several issues on predicting the real estate price are discussed and illustrated using the real transaction reports of Jinju, Gyeongsangnam-do. Results have been compared with a simple regression model in terms of the mean absolute error and root square error. It turns out that the regression-kriging model provides a more effective estimation of land price compared to the simple regression model. The regression-kriging method adequately reflects the spatial structure of the term that is not explained by other characteristic variables.

Onion yield estimation using spatial panel regression model (공간 패널 회귀모형을 이용한 양파 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.873-885
    • /
    • 2016
  • Onions are grown in a few specific regions of Korea that depend on the climate and the regional characteristic of the production area. Therefore, when onion yields are to be estimated, it is reasonable to use a statistical model in which both the climate and the region are considered simultaneously. In this paper, using a spatial panel regression model, we predicted onion yields with the different weather conditions of the regions. We used the spatial auto regressive (SAR) model that reflects the spatial lag, and panel data of several climate variables for 13 main onion production areas from 2006 to 2015. The spatial weight matrix was considered for the model by the threshold value method and the nearest neighbor method, respectively. Autocorrelation was detected to be significant for the best fitted model using the nearest neighbor method. The random effects model was chosen by the Hausman test, and the significant climate variables of the model were the cumulative duration time of sunshine (January), the average relative humidity (April), the average minimum temperature (June), and the cumulative precipitation (November).

Effects of the Modifiable Areal Unit Problem (MAUP) on a Spatial Interaction Model (공간 상호작용 모델에 대한 공간단위 수정가능성 문제(MAUP)의 영향)

  • Kim, Kam-Young
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.197-211
    • /
    • 2011
  • Due to the complexity of spatial interaction and the necessity of spatial representation and modeling, aggregation of spatial interaction data is indispensible. Given this, the purpose of this paper is to evaluate the effects of modifiable areal unit problem (MAUP) on a spatial interaction model. Four aggregation schemes are utilized at eight different scales: 1) randomly select seeds of district and then allocate basic spatial units to them, 2) minimize the sum of population weighted distance within a district, 3) maximize the proportion of flow within a district, and 4) minimize the proportion of flow within a district. A simple Poisson regression model with origin and destination constraints is utilized. Analysis results demonstrate that spatial characteristics of residuals, parameter values, and goodness-of-fit of the model were influenced by aggregation scale and schemes. Overall, the model responded more sensitively to aggregation scale than aggregation schemes and the scale effect on the model was varied according to aggregation schemes.

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Application of geographical and temporal weighted regression model to the determination of house price (지리시간가중 회귀모형을 이용한 주택가격 영향요인 분석)

  • Park, Saehee;Kim, Minsoo;Baek, Jangsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.173-183
    • /
    • 2017
  • We investigate the factors affecting the price of apartments using the spatial and temporal data of private real estate prices. The factors affecting the price of apartment were analyzed using geographical and temporal weighted regression (GTWR) model which incorporates the temporal and spatial variation. In contrast to the OLS, a general approach used in previous studies, and GWR method which is most widely used for analyzing spatial data, GTWR considers both temporal and spatial characteristics of the house price, and leads to better description of the house price determination. Year of construction and floor area are selected as the significant factors from the analysis, and the house price are affected by them temporally and geographically.

A Comparative Study on the Genetic Algorithm and Regression Analysis in Urban Population Surface Modeling (도시인구분포모형 개발을 위한 GA모형과 회귀모형의 적합성 비교연구)

  • Choei, Nae-Young
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.107-117
    • /
    • 2010
  • Taking the East-Hwasung area as the case, this study first builds gridded population data based on the municipal population survey raw data, and then measures, by way of GIS tools, the major urban spatial variables that are thought to influence the composition of the regional population. For the purpose of comparison, the urban models based on the Genetic Algorithm technique and the regression technique are constructed using the same input variables. The findings indicate that the GA output performed better in differentiating the effective variables among the pilot model variables, and predicted as much consistent and meaningful coefficient estimates for the explanatory variables as the regression models. The study results indicate that GA technique could be a very useful and supplementary research tool in understanding the urban phenomena.

A study on the spatial neighborhood in spatial regression analysis (공간이웃정보를 고려한 공간회귀분석)

  • Kim, Sujung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.505-513
    • /
    • 2017
  • Recently, numerous small area estimation studies have been conducted to obtain more detailed and accurate estimation results. Most of these studies have employed spatial regression models, which require a clear definition of spatial neighborhoods. In this study, we introduce the Delaunay triangulation as a method to define spatial neighborhood, and compare this method with the k-nearest neighbor method. A simulation was conducted to determine which of the two methods is more efficient in defining spatial neighborhood, and we demonstrate the performance of the proposed method using a land price data.