• Title/Summary/Keyword: Spatial Regression Model

Search Result 381, Processing Time 0.022 seconds

Spatial Hedonic Modeling using Geographically Weighted LASSO Model (GWL을 적용한 공간 헤도닉 모델링)

  • Jin, Chanwoo;Lee, Gunhak
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.917-934
    • /
    • 2014
  • Geographically weighted regression(GWR) model has been widely used to estimate spatially heterogeneous real estate prices. The GWR model, however, has some limitations of the selection of different price determinants over space and the restricted number of observations for local estimation. Alternatively, the geographically weighted LASSO(GWL) model has been recently introduced and received a growing interest. In this paper, we attempt to explore various local price determinants for the real estate by utilizing the GWL and its applicability to forecasting the real estate price. To do this, we developed the three hedonic models of OLS, GWR, and GWL focusing on the sales price of apartments in Seoul and compared those models in terms of model fit, prediction, and multicollinearity. As a result, local models appeared to be better than the global OLS on the whole, and in particular, the GWL appeared to be more explanatory and predictable than other models. Moreover, the GWL enabled to provide spatially different sets of price determinants which no multicollinearity exists. The GWL helps select the significant sets of independent variables from a high dimensional dataset, and hence will be a useful technique for large and complex spatial big data.

  • PDF

Ensemble Method for Predicting Particulate Matter and Odor Intensity (미세먼지, 악취 농도 예측을 위한 앙상블 방법)

  • Lee, Jong-Yeong;Choi, Myoung Jin;Joo, Yeongin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.

Making a Hazard Map of Road Slope Using a GIS and Logistic Regression Model (GIS와 Logistic 회귀모형을 이용한 접도사면 재해위험도 작성)

  • Kang, In-Joon;Kang, Ho-Yun;Jang, Yong-Gu;Kwak, Young-Joo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.85-91
    • /
    • 2006
  • Recently, slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and needs maintenance of road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF

An Analytical Model for Calculating Initial Stiffnesses of Double Angle Connections (더블앵글 접합부의 초기강성 산정을 위한 해석모델)

  • Yang, Jae-Guen;Kim, Ki-Hwan;Kim, Ho-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.55-63
    • /
    • 2004
  • Double angle connections are commonly used for the construction of the low-rise steel framed buildings. Several experimental tests lave been conducted to investigate the effect of the number of bolts on the rotational stiffness of a double angle connection. Several parameters are obtained by performing regression analysis. An analytical model has been introduced to calculate the initial stiffness of a double angle connection in this research.

  • PDF

An Analysis of Impact of Urbanization on Income Inequality in Korea: Considering Serial Correlations, Spatial Dependence and Common Factor Effect (우리나라 소득불평등에 도시화가 미치는 영향 분석: 지니계수의 시차 자기상관, 공간의존성, 공통요인 효과를 고려하여)

  • So-youn Kim;Suyeol Ryu
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.310-323
    • /
    • 2023
  • Urbanization and income distribution issues are global interest, and the results of studies on the impact of urbanization on income inequality are different for each country and period. This study analyzes the impact of urbanization on income inequality using regional data from 2000-2021. In particular, serial correlation, spatial dependence, and common factor effects of the Gini coefficient are confirmed and analyzed through a dynamic spatial panel regression model. As a result, urbanization has a positive effect on reducing income inequality. Therefore, it is necessary to continuously promote regional urbanization to improve the income distribution problem. Areas with already high urbanization rates should reduce income inequality by narrowing the wage gap by expanding training opportunities for low-skilled workers, and need to come up with measures to prevent counter-urbanization.

Analysis of the Inundation Potential by Elevation for the Land Evaluation in the Potentially Inundated Farms - A Case Study in Ibang-myeon, Changnyeong-gun, Kyungsangnamdo - (상습침수 농경지의 토지평가를 위한 고도별 침수 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park In-Hwan;Jang Gab-Sue;Seo Dong-Joe
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.71-82
    • /
    • 2005
  • A large scale of riverside rearrangement has been recently done in the major rivers in Korea. So inundation possibility in agricultural area closed by these rivers has been higher than the possibility a few years ago. However, land use in this area has not been adjusted to a change of this situation near the rivers. Therefore, when typhoon or heavy rain is happened on this area, it can cause a large damage in agricultural area. This study analyzed inundation potentiality in agricultural area at Ibang-myeon, Changnyeong-gun, Kyeongnam-province, Korea by using the logistic regression model and the piecewise regression model. The first thing we did was to transfer the inundation area per elevation to the accumulated inundation area per elevation. This accumulated inundation area per elevation as an distribution function could be described by the logistic regression model(LRM), and piecewise regression model(PRM) could make it much more accurate to analyze the inundation area per elevation. As a result, the regression models derived from LRM and PRM showed $R^2$ over 0.950. The models derived from LRM and PRM in Ibang-myeon noted that frequently inundated area(FIA) was shown up to 12.12m in elevation, and potentially inundated area(PIA) was shown up to 14.60m in elevation. In FIA, regular agricultural activity would be impossible. And It would be not easy to continue the regular agricultural activity in PIA. So, this land should be rearranged to be used for a buffer zone for ecosystem protection, landscape conservation and things like that in riverside.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

Analysing the Effects of Regional Factors on the Regional Variation of Obesity Rates Using the Geographically Weighted Regression (공간분석을 이용한 지역별 비만율에 영향을 미치는 요인분석)

  • Kim, Da Yang;Kwak, Jin-Mi;Seo, Eun-Won;Lee, Kwang-Soo
    • Health Policy and Management
    • /
    • v.26 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • Background: This study purposed to analyze the relationship between regional obesity rates and regional variables. Methods: Data was collected from the Korean Statistical Information Service (KOSIS) and Community Health Survey in 2012. The units of analysis were administrative districts such as city, county, and district. The dependent variable was the age-sex adjusted regional obesity rates. The independent variables were selected to represent four aspects of regions: health behaviour factor, psychological factor, socio-economic factor, and physical environment factor. Along with the traditional ordinary least square (OLS) regression analysis model, this study applied geographically weighted regression (GWR) analysis to calculate the regression coefficients for each region. Results: The OLS results showed that there were significant differences in regional obesity rates in high-risk drinking, walking, depression, and financial independence. The GWR results showed that the size of regression coefficients in independent variables was differed by regions. Conclusion: Our results can help in providing useful information for health policy makers. Regional characteristics should be considered when allocating health resources and developing health-related programs.

Digital mapping of soil carbon stock in Jeolla province using cubist model

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1097-1107
    • /
    • 2020
  • Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 cm) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 cm, 10 to 20 cm, 20 to 30 cm) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 kg·m-2. The R2 value representing the model's performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 cm in Jeolla Province were estimated to be about 81 megatons.

Statistical estimation of crop yields for the Midwestern United States using satellite images, climate datasets, and soil property maps

  • Kim, Nari;Cho, Jaeil;Hong, Sungwook;Ha, Kyung-Ja;Shibasaki, Ryosuke;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.383-401
    • /
    • 2016
  • In this paper, we described the statistical modeling of crop yields using satellite images, climatic datasets, soil property maps, and fertilizer data for the Midwestern United States during 2001-2012. Satellite images were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic datasets were provided by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group. Soil property maps were derived from the Harmonized World Soil Database (HWSD). Our multivariate regression models produced quite good prediction accuracies, with differences of approximately 8-15% from the governmental statistics of corn and soybean yields. The unfavorable conditions of climate and vegetation in 2012 could have resulted in a decrease in yields according to the regression models, but the actual yields were greater than predicted. It can be interpreted that factors other than climate, vegetation, soil, and fertilizer may be involved in the negative biases. Also, we found that soybean yield was more affected by minimum temperature conditions while corn yield was more associated with photosynthetic activities. These two crops can have different potential impacts regarding climate change, and it is important to quantify the degree of the crop sensitivities to climatic variations to help adaptation by humans. Considering the yield decreases during the drought event, we can assume that climatic effect may be stronger than human adaptive capacity. Thus, further studies are demanded particularly by enhancing the data regarding human activities such as tillage, fertilization, irrigation, and comprehensive agricultural technologies.