• Title/Summary/Keyword: Spatial Grid

Search Result 704, Processing Time 0.026 seconds

Analysis of Long-Term Wave Distribution at Jeju Sea Based on SWAN Model Simulation (SWAN모델을 이용한 제주해역 장기 파랑분포 특성 연구)

  • Ryu Hwangjin;Hong Keyyong;Shin Seung-Ho;Song Museok;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.137-145
    • /
    • 2004
  • Long-term wave distribution at Jeju sea is investigated by a numerical simulation based on the thirdgeneration wave model SWAN (Simulating WAves Nearshore). The Jeju sea which retains relatively high wave energy density among Korean coastal regions is considered to be a suitable site for wave power generation and the efficiency of wave power generation is closely related to local wave characteristics. The monthly mean of a large-scale long-term wave data from 1979 to 2002, which is provided by Korea Ocean Research & Development Institute. is used as the boundary condition of SWAN model simulation with 1km grid. An analysis of wave distribution concentrates on the seasonal variation and spatial distribution of significant wave heights, mean wave directions and mean wave periods. Significant wave heights are higher in winter and summer and the west sea of Jeju appears relatively higher than east's. The highest significant wave height occurs at the northeast sea in winter and the second highest significant wave height appears at the southeast sea in summer, while the significant wave heights in spring and autumn are relatively low but homogeneous. The distribution of wave directions reveals that except the rear region influenced by wave refraction, the northwest wave direction is dominant in summer and the southeast in winter. Wave periods are longer in summer and winter and the west sea of Jeju appears relatively longer than east's. The longest wave period occurs at the west sea in winter, and in summer it appears relatively homogeneous with a little longer period at the south sea.

  • PDF

NEAR REAL-TIME IONOSPHERIC MODELING USING A RBGIONAL GPS NETWORK (지역적 GPS 관측망을 이용한 준실시간 전리층 모델링)

  • Choi, Byung-Kyu;Park, Jong-Uk;Chung, Jeong-Kyun;Park, Phil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • Ionosphere is deeply coupled to the space environment and introduces the perturbations to radio signal because of its electromagnetic characteristics. Therefore, the status of ionosphere can be estimated by analyzing the GPS signal errors which are penetrating the ionosphere and it can be the key to understand the global circulation and change in the upper atmosphere, and the characteristics of space weather. We used 9 GPS Continuously Operating Reference Stations (CORS), which have been operated by Korea Astronomy and Space Science Institute (KASI) , to determine the high precision of Total Electron Content (TEC) and the pseudorange data which is phase-leveled by a linear combination with carrier phase to reduce the inherent noise. We developed the method to model a regional ionosphere with grid form and its results over South Korea with $0.25^{\circ}\;by\;0.25^{\circ}$ spatial resolution. To improve the precision of ionosphere's TEC value, we applied IDW (Inverse Distance Weight) and Kalman Filtering method. The regional ionospheric model developed by this research was compared with GIMs (Global Ionosphere Maps) preduced by Ionosphere Working Group for 8 days and the results show $3\~4$ TECU difference in RMS values.

Flood Runoff Analysis using Radar Rainfall and Vflo Model for Namgang Dam Watershed (레이더강우와 Vflo모형을 이용한 남강댐유역 홍수유출해석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • Recently, very short-term rainfall forecast using radar is required for regional flash flood according to climate change. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. Vflo model which was developed Oklahoma university was used as physical based distributed model, and Namgang dam watershed ($2,293km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using K-RainVieux, preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model(Vflo). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

  • PDF

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

Future Projection of Changes in Extreme Temperatures using High Resolution Regional Climate Change Scenario in the Republic of Korea (고해상도 지역기후변화 시나리오를 이용한 한국의 미래 기온극값 변화 전망)

  • Lee, Kyoung-Mi;Baek, Hee-Jeong;Park, Su-Hee;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.208-225
    • /
    • 2012
  • The spatial characteristics of changes in extreme temperature indices for 2070-2099 relative to 1971-2000 in the Republic of Korea were investigated using daily maximum (Tmax) and minimum (Tmin) temperature data from a regional climate model (HadGEM3-RA) based on the IPCC RCP4.5/8.5 at 12.5km grid spacing and observations. Six temperature-based indices were selected to consider the frequency and intensity of extreme temperature events. For validation during the reference period (1971-2000), the simulated Tmax and Tmin distributions reasonably reproduce annual and seasonal characteristics not only for the relative probability but also the variation range. In the future (2070-2099), the occurrence of summer days (SD) and tropical nights (TR) is projected to be more frequent in the entire region while the occurrence of ice days (ID) and frost days (FD) is likely to decrease. The increase of averaged Tmax above 95th percentile (TX95) and Tmin below 5th percentile (TN5) is also projected. These changes are more pronounced under RCP8.5 scenario than RCP4.5. The changes in extreme temperature indices except for FD show significant correlations with altitude, and the changes in ID, TR, and TN5 also show significant correlations with latitude. The mountainous regions are projected to be more influenced by an increase of low extreme temperature than low altitude while the southern coast is likely to be more influenced by an increase of tropical nights.

  • PDF

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

Seasonal Variation of Surface heat budget and Wind Stress Over the Seas Around the Korean Peninsula (한반도주위 해양에서 의 해면 열수지와 응력의 계절변화)

  • 강인식;김맹기
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 1994
  • The distributions of heat and momentum fluxes on the surface over the oceans around the Korean Peninsula are obtained based on the surface-layer flux model of Kim and Kang (1994), and their seasonal variations are examined in the present study. the input data of the model is the oceanatmosphere data with a grid interval of 2$^{\circ}$ in longitude and latitude. The atmosphere data, which are the pressure, temperature, and specific humidity on the 1000 mb level for 3 year period of 1985∼1987, are obtained from the European center for Medium Range Forecast. The sea surface temperature (SST) is obtained from National Meteorological Center (NMC). The solar insolation and longwave radiation on the ocean surface are obtained, respectively, from the NASA satellite data and based on an emprical formula. It is shown from the net heat flux that the oceans near Korea lose heat to the atmosphere in January and October with the rates of 200∼ 400 Wm/SUP -2/ and 100 Wm/SUP -2/, respectively. But the oceans are heated by the atmosphere in April and July with about the same rate of 100 Wm/SUP -2/. The annualmean net heat flux is negative over the entire domain except the northern part of the Yellow Sea. The largest annual-mean cooling rate of about 120 Wm/SUP -2/ is appeared off the southwest of Japan. In the East Sea, the annual-mean cooling rate is 60∼90 Wm/SUP -2/ in the southern and northern parts and about 30 Wm/SUP -2/ in the middle part. The magnitude of wind stress in january is 3∼ 5 times bigger than those of the other months. As a result, the spatial pattern of annual-mean wind stress is similar to that of January. It is also shown that the annual-mean wind stress curl is negative. in the East China Sea and the South Sea,but it is positive in the northern part of the Yellow Sea.In the East sea,the stress curl is positive in the southeast and northern parts and negative in the northwestern part.

  • PDF

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

Mapping Monthly Temperature Normals Across North Korea at a Landscape Scale (북한지역 평년의 경관규모 기온분포도 제작)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • This study was carried out to estimate monthly mean of daily maximum and minimum temperature across North Korea at a 30 m grid spacing for a climatological normal year (1971-2000) and the 4 decadal averages (1971-1980, 1981-1990, 1991-2000, and 2001-2010). A geospatial climate interpolation method, which has been successfully used to produce the so-called 'High-Definition Digital Climate Maps' (HD-DCM), was used in conjunction with the 27 North Korean and 17 South Korean synoptic data. Correction modules including local effects of cold air drainage, thermal belt, ocean, solar irradiance and urban heat island were applied to adjust the synoptic temperature data in addition to the lapse rate correction. According to the final temperature estimates for a normal year, North Korean winter is expected colder than South Korean winter by $7^{\circ}C$ in average, while the spatial mean summer temperature is lower by $3^{\circ}C$ than that for South Korea. Warming trend in North Korea for the recent 40 years (1971-2010) was most remarkable in spring and fall, showing a 7.4% increase in the land area with 15 or higher daily maximum temperature for April.

Groundwater Recharge Estimation for the Gyeongan-cheon Watershed with MIKE SHE Modeling System (MIKE SHE 모형을 이용한 경안천 유역의 지하수 함양량 산정)

  • Kim, Chul-Gyum;Kim, Hyeon-Jun;Jang, Cheol-Hee;Im, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.459-468
    • /
    • 2007
  • To estimate the groundwater recharge, the fully distributed parameter based model, MIKE SHE was applied to the Gyeongan-cheon watershed which is one of the tributaries of Han River Basin, and covers approximately $260km^2$ with about 49 km main stream length. To set up the model, spatial data such as topography, land use, soil, and meteorological data were compiled, and grid size of 200m was applied considering computer ability and reliability of the results. The model was calibrated and validated using a split sample procedure against 4-year daily stream flows at the outlet of the watershed. Statistical criteria for the calibration and validation results indicated a good agreement between the simulated and observed stream flows. The annual recharges calculated from the model were compared with the values from the conventional groundwater recession curve method, and the simulated groundwater levels were compared with the observed values. As a result, it was concluded that the model could reasonably simulate the groundwater level and recharge, and could be a useful tool for estimating spatially/temporally the groundwater recharges, and enhancing the analysis of the watershed water cycle.