• Title/Summary/Keyword: Spatial Data

Search Result 8,576, Processing Time 0.046 seconds

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Analysis of Spatial Changes in the Forest Landscape of the Upper Reaches of Guem River Dam Basin according to Land Cover Change (토지피복변화에 따른 금강 상류 댐 유역 산림 경관의 구조적 변화 분석)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Forests within watersheds are essential in maintaining ecosystems and are the central infrastructure for constructing an ecological network system. However, due to indiscriminate development projects carried out over past decades, forest fragmentation and land use changes have accelerated, and their original functions have been lost. Since a forest's structural pattern directly impacts ecological processes and functions in understanding forest ecosystems, identifying and analyzing change patterns is essential. Therefore, this study analyzed structural changes in the forest landscape according to the time-series land cover changes using the FRAGSTATS model for the dam watershed of the Geum River upstream. Land cover changes in the dam watershed of the Geum River upstream through land cover change detection showed an increase of 33.12 square kilometers (0.62%) of forests and 67.26 square kilometers (1.26%) of urbanized dry areas and a decrease of 148.25 square kilometers (2.79%) in agricultural areas from the 1980s to the 2010s. The results of no-sampling forest landscape analysis within the watershed indicated landscape percentage (PLAND), area-weighted proximity index (CONTIG_AM), average central area (CORE_MN), and adjacency index (PLADJ) increased, and the number of patches (NP), landscape shape index (LSI), and cohesion index (COHESION) decreased. Identification of structural change patterns through a moving window analysis showed the forest landscape in Sangju City, Gyeongsangbuk Province, Boeun County in Chungcheongbuk Province, and Jinan Province in Jeollabuk Province was relatively well preserved, but fragmentation was ongoing at the border between Okcheon County in Chungcheongbuk Province, Yeongdong and Geumsan Counties in Chungcheongnam Province, and the forest landscape in areas adjacent to Muju and Jangsu Counties in Jeollabuk Province. The results indicate that it is necessary to establish afforestation projects for fragmented areas when preparing a future regional forest management strategy. This study derived areas where fragmentation of forest landscapes is expected and the results may be used as basic data for assessing the health of watershed forests and establishing management plans.

Intestinal segment and vitamin D3 concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens

  • Jincheng Han;Lihua Wu;Xianliang Lv;Mengyuan Liu;Yan Zhang;Lei He;Junfang Hao;Li Xi;Hongxia Qu;Chuanxin Shi;Zhiqiang Li;Zhixiang Wang;Fei Tang;Yingying Qiao
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.336-350
    • /
    • 2023
  • Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D3 (VD3) concentration (0, 125, 250, 500, 1,000, and 2,000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1-21-day-old broilers provided with the negative control diet without supplemental VD3. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD3 increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1-21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD3 levels from 125 to 1,000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1,000 and 2,000 IU/kg VD3 (p > 0.05). Supplementation with 125-2,000 IU/kg VD3 increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1,161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1,000 IU/kg VD3. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57-1.74 folds by adding 1,000-2,000 IU/kg VD3. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD3 stimulates the two mineral transporter transcription in broiler intestines.

A Study on the Direction of Planting Renewal in the Green Area of Seoul Children's Grand Park Reflecting Functional Changes (기능변화를 반영한 서울어린이대공원 조성녹지의 식재 리뉴얼 방향성 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.21-36
    • /
    • 2023
  • As a solution to environmental issues, such as climate change response, the carbon neutrality strategy, urban heat islands, fine dust, and biodiversity enhancement, the value of urban green spaces and trees are becoming important, and various studies dealing with the effects of trees for environmental improvement are being conducted. This study comprehensively considers the preceding studies on planting tree species, planting structure, planting density, and planting base to propose a direction for the planting renewal of green areas in urban parks and applies the findings to a renewal plan to improve the urban environment through landscaping trees. A field survey was conducted on the planting status of Seoul Children's Grand Park, a large-scale neighborhood park in Seoul, and based on the survey data, a planting function evaluation was conducted, and areas needing improvement in planting function were identified. The planting function evaluation was carried out considering the park function setting, planting concept according to spatial function, and planting status. As a result of the study, the direction of planting renewal according to functional change was derived for each stage of planting function evaluation. Increasing the green area ratio is a priority in setting up park functions, but user convenience should also be considered. As a concept of planting, visual landscape planting involves planting species with beautiful tree shapes, high carbon absorption, and fine dust reduction effects. Ecological landscape planting should create a multi-layered planting site on a slope. Buffer planting should be created as multi-layered forests to improve carbon absorption and fine dust reduction effects. Green planting should consist of broad-leaved trees and herbaceous layers and aim for the natural planting of herbaceous species. For plant species, species with high urban environment improvement effects, local native species, and wild bird preferred species should be selected. As for the planting structure, landscape planting sites and green planting sites should be composed of trees, shrubs, and trees and herbaceous layers that emphasize ecology or require multi-layered buffer functions. A higher standard is applied based on the planting interval for planting density. Installing a rainwater recycling facility and using soil loam for the planting base improves performance. The results of this study are meaningful in that they can be applied to derive areas needing functional improvement by performing planting function evaluation when planning planting renewal of aging urban parks and can suggest renewal directions that reflect the paradigm of functional change of created green areas.

Evaluation of Water Quality Characteristics of Saemangeum Lake Using Statistical Analysis (통계분석을 이용한 새만금호의 수질특성 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.297-306
    • /
    • 2023
  • Saemangeum Lake is the largest artificial lake in Korea. The continuous deterioration of lake water quality necessitates the introduction of novel water quality management strategies. Therefore, this study aims to identify the spatiotemporal water quality characteristics of Saemangeum Lake using data from the National Water Quality Measurement Network and provide basic information for water quality management. In the water quality parameters of Saemangeum Lake, water temperature and total phosphorous content were correlated, and salt, total nitrogen content, pH, and chemical oxygen demand were significantly correlated. Other parameters showed a low correlation. The spatial principal component analysis of Saemangeum Lake showed the characteristics of its four zones. The mid-to-downstream section of the river affected by freshwater inflow showed a high nutrient salt concentration, and the deep-water section of the drainage gate and the lake affected by seawater showed a high salt concentration. Two types of water qualities were observed in the intermediate water area where river water and outer sea water were mixed: waters with relatively low salt and high chemical oxygen demand, and waters with relatively low salt and high pH concentration. In the principal component analysis by time, the water quality was divided into four groups based on the observation month. Group I occurred during May and June in late spring and early summer, Group II was in early spring (March-April) and late autumn (November-December), Group III was in winter (January-February), and Group IV was in summer (July-October) during high temperatures. The water quality characteristics of Saemangeum Lake were found to be affected by the inflow of the upper Mangyeong and Dongjin rivers, and the seawater through the Garuk and Shinshi gates installed in the Saemangeum Embankment. In order to achieve the target water quality of Saemangeum Lake, it is necessary to establish water quality management measures for Saemangeum Lake along with pollution source management measures in the upper basin.

Structural Changes in Rental Housing Markets and a Mismatch between Quartile Income and Rent (월세 임차시장의 구조적 변화에 따른 분위별 소득과 임대료 간의 부정합 분석)

  • JungHo Park;Taegyun Yim
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.17-37
    • /
    • 2023
  • The rental housing market in South Korea, specifically monthly rent with deposit, has been expanding over the last three decades (8.2% in 1990 to 21.0% in 2020), partly replacing the traditional Jeonse market. The distribution of rent has changed due to public rental subsidies and the emergence of luxury rental housing, while the distribution of rental household income has been polarized because of the emergence of rich renters. This study attempts to measure the structural changes in the rental market by developing a new indicator of income-rent mismatch. Using the seven series of the Korea Housing Survey, this study analyzed the changes in rent (reflecting the conversion rate) and income levels of rental households in 2006 (base year) and 10-15 years later (the analysis year) at the national level and at the spatial unit of 16 metropolitan cities and provinces (excluding Sejong), respectively, by dividing them into quartile data. The result reveals that rental housing was undersupplied in middle- and high-income rental housing due to the decline in the highest quartile (25%→18%) and the third quartile groups (25%→20%), while the supply of public rental housing expanded for the second quartile (25%→28%) and the lowest quartile (25%→35) groups. On the demand side, the highest income quartile shrank (25%→21%), while the lowest income quartile grew (25%→31%). Comparing the 16 metropolitan cities and provinces, there were significant regional differences in the direction and intensity of changes in rent and renter household income. In particular, the rental market in Seoul was characterized by supply polarization, which led to an imbalance in the income distribution of rental households. The structural changes in the apartment rental market were different from those in the non-apartment rental market. The findings of this study can be used as a basis for future regional rental housing markets. The findings can support securing affordable rental housing stock for each income quartile group on monthly rent and developing housing stability measures for a balance between income and rent distribution in each region.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.