• Title/Summary/Keyword: Spatial Control

Search Result 1,695, Processing Time 0.029 seconds

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Control Performance Evaluation of Outrigger Damper System of Eccentrically Loaded High-Rise Building (편심하중을 가한 고층건물의 아웃리거 댐퍼 시스템 제어성능평가)

  • Kim, Su-Jin;Kim, Su-Geun;Kang, Ho-Geun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.

A Study on the Guideline of Spatial Composition and Circulation in Triages and Entrances Area in Emergency Departments for Efficient Infection Control (응급부 진입구역과 환자분류구역의 감염관리를 위한 환자동선과 공간구성 계획에 대한 연구)

  • Kang, Jeeeun;Kwon, Soonjung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • Purpose: After Mers breakout in 2015, major hospital in Korea have been renovated the emergency department to make a separate infection control zone for high-risk patient with potential infection and to improve a triage area and an entrance area for efficient patient evaluation. However, there are no specific design standards to reinforce infection control for patients and staffs safety. Therefore, it is important to establish of initial design factors in the triage and entrance area as a guideline. Methods: 5 cases which had been recently renovated are selected to analyze patient circulation and spatial composition in a triage area and an entrance area. The partial floor plans of each case are represented as bubble diagrams to help understanding of different patient circulation flows. Based on this analysis, significant design factors which should be considered in planning stage for infection control have been extracted. Results: 13 design factors are established. Using these design factors, patient circulation diagram is generated to provide an optimized suggestion for efficient infection control. Implications: This suggestion provides basic databases to start to establish design guideline in the triage area and the entrance area to minimize infection spreading in the emergency department.

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles (무인차량 적용을 위한 영상 기반의 지형 분류 기법)

  • Sung, Gi-Yeul;Kwak, Dong-Min;Lee, Seung-Youn;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

Vibration Control of Wind Response of Tall Building Using TLD and MTLD (TLD와 MTLD을 이용한 고층건물의 풍응답 진동제어)

  • You, Ki-Pyo;Ko, Nag-Ho;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.73-80
    • /
    • 2005
  • Serviceability of buildings is affect by excessive acceleration experienced at the top floors in wind storms that may cause discomfort to the occupants. Tuned liquid damper(TLD) and multiple tuned liquid damper(MTLD) are passive control devices that consists of rigid tank filled with liquid to suppress the vibration of structures. This TLD and MTLD are attributable to several potential advantages - low costs; easy to install in existing structures; effective even for small-amplitude vibrations. In this paper, the behavior of TLD and MTLD are investigated analytically and wind tunnel test of high-frequency force balance.

  • PDF

Nonlinear Analysis of Hybrid-Typed Cable Structures by Stress Control (장력제어 기법을 이용한 Hybrid형 케이블 구조물의 비선형 시공해석)

  • Jeong, Eul-Seok;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.123-130
    • /
    • 2004
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

Validation of Quality Control Algorithms for Temperature Data of the Republic of Korea (한국의 기온자료 품질관리 알고리즘의 검증)

  • Park, Changyong;Choi, Youngeun
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.299-307
    • /
    • 2012
  • This study is aimed to validate errors for detected suspicious temperature data using various quality control procedures for 61 weather stations in the Republic of Korea. The quality control algorithms for temperature data consist of four main procedures (high-low extreme check, internal consistency check, temporal outlier check, and spatial outlier check). Errors of detected suspicious temperature data are judged by examining temperature data of nearby stations, surface weather charts, hourly temperature data, daily precipitation, and daily maximum wind direction. The number of detected errors in internal consistency check and spatial outlier check showed 4 days (3 stations) and 7 days (5 stations), respectively. Effective and objective methods for validation errors through this study will help to reduce manpower and time for conduct of quality management for temperature data.

3-D Sound-Field Creation Implementing the Virtual Reality Ship Handling Simulator(II): Sound-Field Control (가상현실 선박조종 시뮬레이터 구현을 위한 3차원 음장 생성(II): 음장제어)

  • 임정빈
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.3
    • /
    • pp.27-34
    • /
    • 1998
  • The paper is the second part on the 3-D sound-field creation implementing the Virtual Reality Ship Handling Simyulator(VRSHS). As mentioned in the previous part Ⅰ, the spatial impression, which arose from reproduced 3-D sound-field , give natural sound environmental context to a listener. This spatial impression is due to the reverberation by reflections and ,is can be obtain by using Head-Related Transfer Function(HRTF). In this work, we foumulate early and late reverberation models of the HRTF's with theoretical control factors based on the sound-energy distribution in an irregularly shaped enclosures. Using the reverberation models, we report results from psychophysical tests used to asses the validity of the proposed 3-D soud-field control method.

  • PDF