• Title/Summary/Keyword: Sparse signal

Search Result 124, Processing Time 0.017 seconds

High Resolution ISAR Imaging Based on Improved Smoothed L0 Norm Recovery Algorithm

  • Feng, Junjie;Zhang, Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5103-5115
    • /
    • 2015
  • In radar imaging, a target is usually consisted of a few strong scatterers which are sparsely distributed. In this paper, an improved sparse signal recovery algorithm based on smoothed l0 (SL0) norm method is proposed to achieve high resolution ISAR imaging with limited pulse numbers. Firstly, one new smoothed function is proposed to approximate the l0 norm to measure the sparsity. Then a single loop step is used instead of two loop layers in SL0 method which increases the searching density of variable parameter to ensure the recovery accuracy without increasing computation amount, the cost function is undated in every loop for the next loop until the termination is satisfied. Finally, the new set of solution is projected into the feasible set. Simulation results show that the proposed algorithm is superior to the several popular methods both in terms of the reconstruction performance and computation time. Real data ISAR imaging obtained by the proposed algorithm is competitive to several other methods.

Super-Resolution Using NLSA Mechanism (비지역 희소 어텐션 메커니즘을 활용한 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2022
  • With the development of deep learning, super-resolution (SR) methods have tried to use deep learning mechanism, instead of using simple interpolation. SR methods using deep learning is generally based on convolutional neural networks (CNN), but recently, SR researches using attention mechanism have been actively conducted. In this paper, we propose an approach of improving SR performance using one of the attention mechanisms, non-local sparse attention (NLSA). Through experiments, we confirmed that the performance of the existing SR models, IMDN, CARN, and OISR-LF-s can be improved by using NLSA.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array (주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구)

  • Choi, Yong Hwa;Kim, Dong Hyeon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Time delay estimation between two receivers using basis pursuit denoising (Basis pursuit denoising을 사용한 두 수신기 간 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2017
  • Many methods have been studied to estimate the time delay between incoming signals to two receivers. In the case of the method based on the channel estimation technique, the relative delay between the input signals of the two receivers is estimated as an impulse response of the channel between the two signals. In this case, the characteristic of the channel has sparsity. Most of the existing methods do not take advantage of the channel sparseness. In this paper, we propose a time delay estimation method using BPD (Basis Pursuit Denoising) optimization technique, which is one of the sparse signal optimization methods, in order to utilize the channel sparseness. Compared with the existing GCC (Generalized Cross Correlation) method, adaptive eigen decomposition method and RZA-LMS (Reweighted Zero-Attracting Least Mean Square), the proposed method shows that it can mitigate the threshold phenomenon even under a white Gaussian source, a colored signal source and oceanic mammal sound source.