• Title/Summary/Keyword: Sparse learning

Search Result 123, Processing Time 0.019 seconds

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

Face recognition Based on Super-resolution Method Using Sparse Representation and Deep Learning (희소표현법과 딥러닝을 이용한 초고해상도 기반의 얼굴 인식)

  • Kwon, Ohseol
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2018
  • This paper proposes a method to improve the performance of face recognition via super-resolution method using sparse representation and deep learning from low-resolution facial images. Recently, there have been many researches on ultra-high-resolution images using deep learning techniques, but studies are still under way in real-time face recognition. In this paper, we combine the sparse representation and deep learning to generate super-resolution images to improve the performance of face recognition. We have also improved the processing speed by designing in parallel structure when applying sparse representation. Finally, experimental results show that the proposed method is superior to conventional methods on various images.

A study on the localization of incipient propeller cavitation applying sparse Bayesian learning (희소 베이지안 학습 기법을 적용한 초생 프로펠러 캐비테이션 위치추정 연구)

  • Ha-Min Choi;Haesang Yang;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.529-535
    • /
    • 2023
  • Noise originating from incipient propeller cavitation is assumed to come from a limited number of sources emitting a broadband signal. Conventional methods for cavitation localization have limitations because they cannot distinguish adjacent sound sources effectively due to low accuracy and resolution. On the other hand, sparse Bayesian learning technique demonstrates high-resolution restoration performance for sparse signals and offers greater resolution compared to conventional cavitation localization methods. In this paper, an incipient propeller cavitation localization method using sparse Bayesian learning is proposed and shown to be superior to the conventional method in terms of accuracy and resolution through experimental data from a model ship.

Active Learning on Sparse Graph for Image Annotation

  • Li, Minxian;Tang, Jinhui;Zhao, Chunxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2650-2662
    • /
    • 2012
  • Due to the semantic gap issue, the performance of automatic image annotation is still far from satisfactory. Active learning approaches provide a possible solution to cope with this problem by selecting most effective samples to ask users to label for training. One of the key research points in active learning is how to select the most effective samples. In this paper, we propose a novel active learning approach based on sparse graph. Comparing with the existing active learning approaches, the proposed method selects the samples based on two criteria: uncertainty and representativeness. The representativeness indicates the contribution of a sample's label propagating to the other samples, while the existing approaches did not take the representativeness into consideration. Extensive experiments show that bringing the representativeness criterion into the sample selection process can significantly improve the active learning effectiveness.

A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing (Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구)

  • Jeong, Seongmoon;Lim, Dongmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1122-1132
    • /
    • 2012
  • Compressed sensing has been applied to many fields such as images, speech signals, radars, etc. It has been mainly applied to stationary signals, and reconstruction error could grow as compression ratios are increased by decreasing measurements. To resolve the problem, speech signals are divided into frames and processed in parallel. The frames are made sparse by dictionary learning, and adaptive compressed sensing is applied which designs the compressed sensing reconstruction matrix adaptively by using the difference between the sparse coefficient vector and its reconstruction. Through the proposed method, we could see that fast and accurate reconstruction of non-stationary signals is possible with compressed sensing.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Cooperative Multi-agent Reinforcement Learning on Sparse Reward Battlefield Environment using QMIX and RND in Ray RLlib

  • Minkyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • Multi-agent systems can be utilized in various real-world cooperative environments such as battlefield engagements and unmanned transport vehicles. In the context of battlefield engagements, where dense reward design faces challenges due to limited domain knowledge, it is crucial to consider situations that are learned through explicit sparse rewards. This paper explores the collaborative potential among allied agents in a battlefield scenario. Utilizing the Multi-Robot Warehouse Environment(RWARE) as a sparse reward environment, we define analogous problems and establish evaluation criteria. Constructing a learning environment with the QMIX algorithm from the reinforcement learning library Ray RLlib, we enhance the Agent Network of QMIX and integrate Random Network Distillation(RND). This enables the extraction of patterns and temporal features from partial observations of agents, confirming the potential for improving the acquisition of sparse reward experiences through intrinsic rewards.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

A Novel Multiple Kernel Sparse Representation based Classification for Face Recognition

  • Zheng, Hao;Ye, Qiaolin;Jin, Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1463-1480
    • /
    • 2014
  • It is well known that sparse code is effective for feature extraction of face recognition, especially sparse mode can be learned in the kernel space, and obtain better performance. Some recent algorithms made use of single kernel in the sparse mode, but this didn't make full use of the kernel information. The key issue is how to select the suitable kernel weights, and combine the selected kernels. In this paper, we propose a novel multiple kernel sparse representation based classification for face recognition (MKSRC), which performs sparse code and dictionary learning in the multiple kernel space. Initially, several possible kernels are combined and the sparse coefficient is computed, then the kernel weights can be obtained by the sparse coefficient. Finally convergence makes the kernel weights optimal. The experiments results show that our algorithm outperforms other state-of-the-art algorithms and demonstrate the promising performance of the proposed algorithms.

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.