• Title/Summary/Keyword: Sparse channel

Search Result 57, Processing Time 0.02 seconds

Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel (Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교)

  • Kim, Hyeon-Su;Kim, Jae-Young;Park, Gun-Woo;Choi, Young-Kwan;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In this paper, we evaluate and analyze representative estimation methods for the sparse channel. In order to evaluate error performance of matching pursuit(MP) and minimum mean square error(MMSE) algorithm, lower bound of MMSE is determined by Cramer-Rao bound and compared with upper bound of MP. Based on analysis of those bounds, mean square error of MP which is effective in the estimation of sparse channel can be larger than that of MMSE according to the number of estimated tap and signal-to-noise ratio. Simulation results show that the performances of both algorithm are reversed on the sparse channel with Rayleigh fading according to signal-to-noise ratio.

Sparse Channel Estimation of Single Carrier Frequency Division Multiple Access Based on Compressive Sensing

  • Zhong, Yuan-Hong;Huang, Zhi-Yong;Zhu, Bin;Wu, Hua
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.342-353
    • /
    • 2015
  • It is widely accepted that single carrier frequency division multiple access (SC-FDMA) is an excellent candidate for broadband wireless systems. Channel estimation is one of the key challenges in SC-FDMA, since accurate channel estimation can significantly improve equalization at the receiver and, consequently, enhance the communication performances. In this paper, we study the application of compressive sensing for sparse channel estimation in a SC-FDMA system. By skillfully designing pilots, their patterns, and taking advantages of the sparsity of the channel impulse response, the proposed system realizes channel estimation at a low cost. Simulation results show that it can achieve significantly improved performance in a frequency selective fading sparse channel with fewer pilots.

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

A Study on the Sparse Channel Estimation Technique in Underwater Acoustic Channel (수중음향채널에서 Sparse 채널 추정 기법에 관한 연구)

  • Gwun, Byung-Chul;Lee, Oi-Hyung;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1061-1066
    • /
    • 2014
  • Transmission characteristics of the sound propagation is very complicate and sparse in shallow water. To increase the performance of underwater acoustic communication system, lots of channel estimation technique has been proposed. In this paper, we proposed the channel estimation based on LMS(Least Mean Square) algorithm which has faster convergence speed than conventional sparse-aware LMS algorithms. The proposed method combines $L_p$-norm LMS with soft decision process. Simulation was performed by using the sound velocity profile which acquired in real sea trial. As a result, we confirmed that the proposed method shows the improved performance and faster convergence speed than conventional methods.

Application of the CS-based Sparse Volterra Filter to the Super-RENS Disc Channel Modeling (Super-RENS 디스크 채널 모델링에서 CS-기반 Sparse Volterra 필터의 적용)

  • Moon, Woo-Sik;Park, Se-Hwang;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.59-65
    • /
    • 2012
  • In this paper, we investigate the compressed sensing (CS) algorithms for modeling a super-resolution near-field structure (super-RENS) disc system with a sparse Volterra filter. It is well known that the super-RENS disc system has severe nonlinear inter-symbol interference (ISI). A nonlinear system with memory can be well described with the Volterra series. Furthermore, CS can restore sparse or compressed signals from measurements. For these reasons, we employ the CS algorithms to estimate a sparse super-RENS read-out channel. The evaluation results show that the CS algorithms can efficiently construct a sparse Volterra model for the super-RENS read-out channel.

The Expectation and Sparse Maximization Algorithm

  • Barembruch, Steffen;Scaglione, Anna;Moulines, Eric
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • In recent years, many sparse estimation methods, also known as compressed sensing, have been developed. However, most of these methods presume that the measurement matrix is completely known. We develop a new blind maximum likelihood method-the expectation-sparse-maximization (ESpaM) algorithm-for models where the measurement matrix is the product of one unknown and one known matrix. This method is a variant of the expectation-maximization algorithm to deal with the resulting problem that the maximization step is no longer unique. The ESpaM algorithm is justified theoretically. We present as well numerical results for two concrete examples of blind channel identification in digital communications, a doubly-selective channel model and linear time invariant sparse channel model.

Matching Pursuit Based Sparse Multipath Channel Estimation for Multicarrier Systems (다중반송파 시스템의 정합추구 기반 희소 다중경로 채널 추정)

  • Kim, See-Hyun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.258-264
    • /
    • 2012
  • Although linear channel estimation for the frequency selective fading channel has been widely deployed, its accuracy depends on the number of pilots to probe the channel. Thus, it is unavoidable to employ large number of pilots to enhance the channel estimation performance, which essentially leads to the degradation of the transmission efficiency. It even does not utilize the sparseness of the multipath channel. In this paper a sparse channel estimation scheme based on the matching pursuit algorithm and a pilot assignment method, which minimizes the coherence, are proposed. The simulation results reveal that the proposed algorithm shows superior channel estimation performance with fewer pilots to the LS based ones.

Block Sparse Signals Recovery Algorithm for Distributed Compressed Sensing Reconstruction

  • Chen, Xingyi;Zhang, Yujie;Qi, Rui
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.410-421
    • /
    • 2019
  • Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.

Non-stationary Sparse Fading Channel Estimation for Next Generation Mobile Systems

  • Dehgan, Saadat;Ghobadi, Changiz;Nourinia, Javad;Yang, Jie;Gui, Guan;Mostafapour, Ehsan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1047-1062
    • /
    • 2018
  • In this paper the problem of massive multiple input multiple output (MIMO) channel estimation with sparsity aware adaptive algorithms for $5^{th}$ generation mobile systems is investigated. These channels are shown to be non-stationary along with being sparse. Non-stationarity is a feature that implies channel taps change with time. Up until now most of the adaptive algorithms that have been presented for channel estimation, have only considered sparsity and very few of them have been tested in non-stationary conditions. Therefore we investigate the performance of several newly proposed sparsity aware algorithms in these conditions and finally propose an enhanced version of RZA-LMS/F algorithm with variable threshold namely VT-RZA-LMS/F. The results show that this algorithm has better performance than all other algorithms for the next generation channel estimation problems, especially when the non-stationarity gets high. Overall, in this paper for the first time, we estimate a non-stationary Rayleigh fading channel with sparsity aware algorithms and show that by increasing non-stationarity, the estimation performance declines.

Two regularization constant selection methods for recursive least squares algorithm with convex regularization and their performance comparison in the sparse acoustic communication channel estimation (볼록 규준화 RLS의 규준화 상수를 정하기 위한 두 가지 방법과 희소성 음향 통신 채널 추정 성능 비교)

  • Lim, Jun-Seok;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.383-388
    • /
    • 2016
  • We develop two methods to select a constant in the RLS (Recursive Least Squares) with the convex regularization. The RLS with the convex regularization was proposed by Eksioglu and Tanc in order to estimate the sparse acoustic channel. However the algorithm uses the regularization constant which needs the information about the true channel response for the best performance. In this paper, we propose two methods to select the regularization constant which don't need the information about the true channel response. We show that the estimation performance using the proposed methods is comparable with the Eksioglu and Tanc's algorithm.