• Title/Summary/Keyword: Spark-plasma sintering

Search Result 406, Processing Time 0.037 seconds

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering (방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조)

  • Jeong Pyo Lee;Jin Kyu Lee
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Fabrication and Evaluation of WC-3 wt%Co Compacts Fabricated by Spark Plasma Sintering (방전플라즈마소결법을 이용한 WC-3 wt%Co 소결체 제조 및 평가)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.357-361
    • /
    • 2008
  • Microstructure and mechanical properties of WC-3 wt% Co cemented carbides, fabricated by a spark plasma sintering (SPS) process, were investigated in this study. The WC-3 wt%Co powders were sintered at $900{\sim}1100^{\circ}C$ for 5min under 40MPa in high vacuum. The density and hardness were increased as the sintering temperature increased. WC-3 wt%Co compacts with a relative density of 97.1% were successfully fabricated at $1100^{\circ}C$. The fracture toughness and hardness of a compact sintered at $1100^{\circ}C$ were $21.6 MPa{\cdot}m^{1/2}$ and 4279 Hv, respectively.

Preparation of $TiB_2$ Dispersed Cu Alloy by Spark Plasma Sintering

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.523-524
    • /
    • 2006
  • The $TiB_2$ dispersion strengthened copper alloy was attracted as thermal and electrical functional material for the high mechanical strength, high thermal stability and good conductivity of $TiB_2$. In the present study, the focus is on the synthesis of $TiB_2$ dispersed copper alloy by spark plasma sintering process using copper oxide and titanium diboride as raw materials. The mechanical, thermal and electrical properties of sintered bodies were discussed with the sintering parameters, and developed microstructure and phase of sintered bodies.

  • PDF

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q.;Khoa, H.X.;Vieta, N.H.;Lee, Y.H.;Lee, B.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.338-344
    • /
    • 2013
  • Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.

The Electric and Thermal Properties of Spark Plasma Sintered Bi0.5Sb1.5Te3 (방전플라즈마 소결된 Bi0.5Sb1.5Te3의 열/전기적 특성)

  • Lee, Gil-Geun;Choi, Young-Hoon;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2012
  • The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic crystal structure. The c-axis of the $Bi_{0.5}Sb_{1.5}Te_3$ crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic characteristics result from crystal alignment.

Biocompatibility of Low Modulus Porous Titanium Implants Fabricated by Spark Plasma Sintering (방전플라즈마소결법에 의해 제조된 저탄성 타이타늄 다공질체의 생체적합성 평가)

  • Song, Ho-Yeon;Kim, Young-Hee;Chang, Se-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Porous Ti compacts were fabricated by spark plasma sintering (SPS) method and their in vitro and in vivo biocompatibilities were investigated. Alkaline phosphatase (ALP) activity representing the activity of osteoblast was increased when osteoblast-like MG-63 cells were cultured on the Ti powder surface. Some genes related to cell growth were over-expressed through microarray analysis. The porous Ti compact with 32.2% of porosity was implanted in the subcutaneous tissue of rats to confirm in vivo cytotoxicity. 12 weeks post-operation, outer surface and inside the porous body was fully filled with fibrous tissue and the formation of new blood vessels were observed. No inflammatory response was confirmed. To investigate the osteoinduction, porous Ti compact was implanted in the femur of NZW rabbits for 4 months. Active in-growth of new bone from the surrounded compact bone was observed around the porous body. From the results, The porous Ti compacts fabricated by spark plasma sintering might be available for the application of the stem part of artificial hip joint.

Thermoelectric Properties of Rapid Solidified p-type Bi2Te3 Alloy Fabricated by Spark Plasma Sintering(SPS) Process (방전 플라즈마 소결법(SPS)으로 제조된 급속응고 p-type Bi2Te3 합금의 소결 특성)

  • Moon, Chul-Dong;Hong, Soon-Jik;Kim, Do-Hyang;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.494-498
    • /
    • 2010
  • The p-type thermoelectric compounds of $Bi_2Te_3$ based doped with 3wt% Te were fabricated by a combination of rapid solidification and spark plasma sintering (SPS) process. The effect of holding time during spark plasma sintering (SPS) on the microstructure and thermoelectric properties were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermoelectric properties. The powders as solidified consisted of homogeneous thermoelectric phases. The thermoelectric figure of merit measured to be maximum ($3.41{\times}10^{-3}/K$) at the SPS temperature of $430^{\circ}C$.