• 제목/요약/키워드: Spark ignition

검색결과 452건 처리시간 0.028초

EGR장치를 부착한 전기점화기관에서의 배출물농도 여측 (The prediction of emission concentrations in spark ignition engine with EGR system)

  • 김용일;김응서
    • 오토저널
    • /
    • 제6권3호
    • /
    • pp.36-44
    • /
    • 1984
  • The prediction of the emission concentrations in 4-cycle 4-cylinder spark ignition engine is made by considering the model with the extended Zedovich mechanism. The predicted values for nitric oxide, carbon dioxide and carbon monoxide agree with the experimentally measured ones.

  • PDF

전원주파수의 변화에 따른 인화성 혼합기체의 최소점화에너지에 관한 실험 연구 (An Experimental Study on Minimum Ignition Energy of Flammable Mixtures by Electric Power Frequency)

  • 최상원
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.26-32
    • /
    • 2012
  • With a progress of electrical and electronic technology, radio-frequency including high frequency components are widely to various industrial installations. Some of them are used in hazardous locations where explosive or flammable gases exist. As a result, ignition of such gases may be induced by a spark discharge when the radio frequency circuits are switched on or off. The purpose of this study is to investigate the ignition hazards of some kind of flammable mixtures based on the IEC 60079-11 publication. In this experiment, we used a high frequency resistive circuit which consists of a co-axial cable, a 20 ${\Omega}$, 30 ${\Omega}$, 40 ${\Omega}$ and 50 ${\Omega}$ resistor and two kind of power amplifier with frequency range up to almost 1 MHz and 50 MHz. Experimental results show that the ignition of the acetyleneair, ethylene-air mixtures and methane-air mixtures due to spark discharge depends primarily on the frequency of the power source in the resistive circuit the minimum ignition voltage increases gradually with the increase of the frequency.

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

희박연소기관용 용량방전식 다회수스파크 점화장치의 개발에 관한 기초 연구 (A basic study on development of multiple- spark capacitor discharge igniter for lean burn engine)

  • 이상준;나성오;이종태
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3676-3685
    • /
    • 1996
  • Enhancement of the ignitability was necessary to realize the lean burn engine. The characteristics of multiple-spark capacitor discharge igniter(MSCDI) usefulness of which for lean burn was examined in constant volume combustion chamber and evaluated in spark ignition engine. Noise of MSCDI for engine was restricted by adoption of low voltage control system. It was found that the adaptability for high engine speed was remarkable. Lean limit in engine with MSCDI was extended 10% than conventional coil ignition system. Also maximum brake thermal efficiency was almost enhanced 1%.

다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I) (Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I))

  • 송재학;이용길;박경석;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1736-1743
    • /
    • 1992
  • 본 연구에서는 기화기부착 4행정 4기통 전기점화기관을 사용하여 흡기관내 액 막흐름에 의한 연료의 불균일화가 기관의 연소특성과 배기특성에 미치는 영향을 규명 하는데 궁극적인 목적을 두고 우선, 연소특성을 해석하기 위하여 비교적 고가인 연소 해석 시스템을 개발하는데 1차적인 목적으로 하였으며, 시험제작한 연소해석 시스템으 로 액막흐름의 가시화 및 배기가스 농도측정과 지압선도 해석을 행하여 구조적으로 대 칭인 1번과 4번 실린더의 연소특성과 배기특성을 비교 검토하였다.

중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구 (A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine)

  • 최경호;조웅래
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

반복점화방식의 점화능력에 관한 연구 (An investigation on ignition ability of the repetitive sparks)

  • 조경국;정인석
    • 오토저널
    • /
    • 제10권3호
    • /
    • pp.60-65
    • /
    • 1988
  • The ignition characteristics of repetitive electric sparks into a quiescent acetylene-air premixture and LPG-argon-air premixture was investigated by using a home-made Repetitive-Spark-Generator(RSG) to elucidate the effect of fuel burning velocity to ignition ability of RSG. Results show that the optimum spark delay time interval is strongly related with fuel burning velocity, or implicitly with characteristic reaction time scale of each fuel.

  • PDF

저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구 (A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • 한국화재소방학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2004
  • 본 논문은 IEC형 불꽃점화 시험장치를 이용하여 저압 유도회로의 최소 점화한계를 프로판-공기 5.25 Vol.%의 혼합 가스에 대하여 실험적으로 구하였으며, 또한 유도회로의 인덕턴스 L에 안전소자로서 저항을 병렬접속 하였을 경우 프로판-공기 5.25 Vol.%의 혼합 가스에 대한 점화한계 개선효과를 고찰하였다. 그 결과, 최소 점화한계는 전류의 크기에 따라 좌우되었다. 또한, 전원으로부터 공급되는 에너지는 인덕턴스에 우선 축적되고, 그 초과분의 에너지가 폭발성 가스의 점화원으로 작용하였다. 점화한계 개선효과는 인덕턴스가 300mH일 때, 최고 330%의 개선효과가 나타났으며 인덕턴스가 클수록 점화한계 개선효과가 크게 나타났다. 또한 병렬로 접속한 저항의 크기가 적을수록 점화한계 개선 효과가 크다. 본 연구결과는 본질안전 방폭형 전기기기의 연구개발을 위한 기본자료로 활용할 수 있을 뿐만 아니라 이들 기기의 방폭 성능에 대한 시험자료로도 활용이 가능할 것으로 사료된다.

점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향 (A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines)

  • 송정훈;서영호;선우명호
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF