• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.038 seconds

An Experimental Study on the Spray Behaviors of Swirl and Slit Injector to Direct Injection Spark Injection Engine (DISI 엔진용 스월인젝터와 슬릿인젝터의 분무 거동에 관한 연구)

  • Lee Changhee;Lee Kihyung;Choi Youngjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The spray characteristics of DISI injector has a great role in engine efficiency and emission. Thus, many researchers have been studied to investigate the spray characteristics of hollow cone type and slit type injector which are used in DISI engine. In this study, we tried to provide spray parameters which effect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_b\;and\;t_c$ to investigate the break up mechanism of test injectors and also obtained $C_v$ to evaluate the spray characteristics. From this study, As the ambient pressure increases in case of slit injector, $C_v$ decreases.

A Study on the Kernel Formation & Development for Lean Burn and EGR Engine (희박연소 및 EGR 엔진에서 초기 화염액 생성 및 성장에 관한 연구)

  • 송정훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.24-33
    • /
    • 1999
  • This paper investigate the effects of the variations of engine operation condition in the flame kernel formation and developmnet . A model for calculating the initial kernel development in spark ignition engines is formualted. It considered input of electrical energy, combustion energy release and heat transfer to the spark plyg, cylinder head, and unburned mixture. The model also takes into accounts strain rate of initial kernel and residual gas fraction. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy and turbulent flame expansion. Flame kernel development also influenced by engine operating conditions, for example, EGR rate, air-fuel ration and intake manifold pressure.

  • PDF

Combustion Characteristics Study of an SI Engine Operated with DME Blended LPG Fuel (LPG-DME 혼합연료를 사용하는 전기점화 기관의 연소특성 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2008
  • In this study, a spark ignition engine operated with the DME blended LPG fuel was investigated experimentally. Performance, emissions characteristics including hydrocarbon, CO, NOx, and combustion stability of an SI engine fuelled with DME blended LPG fuel were examined at $1200{\sim}5200\;rpm$. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to that of pure LPG fuel operation. However, engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the amount of blended fuel as the energy content of DME was much lower than that of LPG. DME blended LPG fuel is expected to be potential for enlarging DME market.

  • PDF

Start and Idle Combustion Characteristics of Hydrogen Engine for the HALE UAV (고고도 무인기용 수소 엔진의 시동성 및 공회전 연소 특성)

  • Kim, Yong-Rae;Choi, Young;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.22-27
    • /
    • 2015
  • Hydrogen features highest energy density per mass and is expected to be desirable as a fuel of HALE(High altitude long endurance) UAV(Unmanned aerial vehicle). A reciprocating internal combustion engine is known to be a reliable and economic power source for this kind of UAV. Therefore, the combination of hydrogen and engine is worth of doing research. Test bench with 2.4L Spark-Ignited engine was prepared for the experiment in which start and combustion characteristics at idle condition were examined in this study. Stable hydrogen supply system and a universal ECU(Engine control unit) were also utilized for the test engine. Equivalence ratio and spark timings at idle operation were investigated and compared to the data of gasoline engine. The results will be a starting point for full-scale research of hydrogen engine for HALE UAV.

Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine (4기통 4사이클 스파크 점화기관의 성능 및 배기조성 예측에 관한 연구)

  • 유병철;최영돈;윤강식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.39-56
    • /
    • 1988
  • In this study, the computer program was developed to predict the engine performances and exhaust emissions of a 4-cylinder 4-stroke cycle ignition engine including intake and exhaust system. The simulation models applied to each process were as follows. For the combustion process, two zone model which requires only one empirical constant was applied, and for the gas exchange process, the method of characteristics that allows the calculations of the time variation and spatial variation of properties along the pipes was used. Constant pressure perfect mixing model was applied to take into account of the interaction at manifold branches. To predict exhaust emissions, twelve chemical species were considered to be present in combustion products. These species were calculated through equilibrium thermodynamics and kinetic theory. The empirical constants reduced to least number as possible were determined through the comparison with the experimental indicator diagram of one particular operating condition and these constants were applied to other operating conditions. The predicted performances and emissions were compared with the experimental results over the wide range of operating conditions.

  • PDF

The Inflow Characteristics of Fresh Air in the Combustion Chamber having the Radical Injector (라디칼 인젝터를 적용한 연소실의 신기유입특성에 관한 연구)

  • Park, Kweon-Ha;Jeon, Jae-Hyeuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.506-513
    • /
    • 2008
  • The engine containing a radical injector has been studied to improve the performances of efficiency and to reduce the exhaust emissions recently. The engine is far different from general compression ignition engines or spark ignition engines for the concept of combustion process. The inflow characteristic from main chamber into radical chamber during compression stroke is important because the radical chamber must have enough fresh air to generate appropriate radicals. The numerical simulation is performed in each specific shape and the engine speed by using KIVA code. The result shows that the fresh air inflow from main chamber into the radical chamber is the best at 45 degree of the hole angle.

The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing (점화시기 근방의 고난류 생성을 위한 기초연구)

  • Hong, Jae-Ung;Song, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.

A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I) (자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I))

  • 박경석;신진식;이경우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

STATISTICAL ALGORITHMS FOR ENGINE KNOCK DETECTION

  • Stotsky, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • A knock detection circuit that is based on the signal of an accelerometer installed on the engine block of a spark ignition automotive engine has a band-pass filter with a certain frequency as a parameter to be calibrated. A new statistical method for the determination of the frequency which is the most suitable for the knock detection in real-time applications is proposed. The method uses both the cylinder pressure and block vibration signals and is divided into two steps. In both steps, a new recursive trigonometric interpolation method that calculates the frequency contents of the signals is applied. The new trigonometric interpolation method developed in this paper improves the performance of the Discrete Fourier Transformation, allowing a flexible choice of the size of the moving window. In the first step, the frequency contents of the cylinder pressure signal are calculated. The knock is detected in the cylinder of the engine cycle for which at least one value of the maximal amplitudes calculated via the trigonometric interpolation method exceeds a threshold value indicating a considerable amount of oscillations in the pressure signal; this cycle is selected as a knocking cycle. In the second step, the frequency analysis is performed on the block vibration signal for the cycles selected in the previous step. The knock detectability, which is an individual cylinder attribute at a certain frequency, is verified via a statistical hypothesis test for testing the equality of two mean values, i.e. mean values of the amplitudes for knocking and non-knocking cycles. Signal-to-noise ratio is associated in this paper with the value of t-statistic. The frequency with the largest signal-to-noise ratio (the value of t-statistic) is chosen for implementation in the engine knock detection circuit.