• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.028 seconds

Effect of Hydrogen Enriched LPG Fuelled Engine with Converted from a Diesel Engine

  • Choi, Gyeung-Ho;Lee, Jae-Cheon;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.139-145
    • /
    • 2006
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.8 to 1.3, and the ignition timing was controlled to be at MBT (minimum spark advance for best torque)

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage (에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성)

  • Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

Characteristics of Exhaust Gas Temperature and Harmful Emission During Cold Start Transient Operation in an SI Engine (가솔린엔진의 냉시동 천이구간에서 배출가스 온도 및 유해배출물 특성에 관한 연구)

  • Cho, Yong-Seok;Jeong, Dae-Chul;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1181-1187
    • /
    • 2006
  • Stringent regulations of exhaust emission from vehicles become a major issue in automotive industries. In SI engines, it is one of the crucial factor to reduce exhaust emissions during cold start in order to meet stringent regulations such as SULEV or EURO-4, because SI engines emit a large portion of total harmful exhaust compounds when they are cold. At early stages of cold start in gasoline engines, exhaust gas temperature plays a key role to improve three way catalyst by virtue of fast warmup. Therefore, this study focused on the increase of exhaust gas temperature under controls of engine operating parameters such as spark ignition timing, valve overlap by virtue of intake VVT and catalyst heating function. Furthermore, effects on harmful emission due to these parameters are also investigated. Experiments showed that retarded spark ignition timings and increased valve overlap may be helpful to increase exhaust gas temperature. It was also found that $NO_x$ was decreased with increased valve overlap. This study also showed that sudden changes in ISA and amount of fuel due to the deactivation of catalyst heating function cause temporal increase of harmful emissions.

A Study on Experiment of CNG as a Clean Fuel for Automobiles in Korea

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.469-474
    • /
    • 2010
  • Gasoline engines have proven their utility in light, medium and heavy duty vehicles. Concern about long term availability of petroleum and the environment norms by the increased vehicular emission have mandated the search for safe fuel. CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. A higher octane number and a higher self ignition temperature make it an attractive gaseous fuel. The thermal efficiency is better than gasoline for the same engine. The reduced carbon mono oxide, carbon di-oxide, hydrocarbon emissions is a favorable outcome along with a slight increase in $NO_x$ emission when compared with gasoline fuel to a dual fuel mode in the existing spark ignition engines. The result from the experiment shows that CNG could be a potential substitute fuel that maintains performance and emissions characteristics in gasoline engines.

A Study on the Power Output and Exhaust Emission using the Fuel Vaporizing Device in Spark-Ignition Engine (기화혼합장치를 사용한 스파크 점화기관의 기관성능 및 배기성능에 관한 연구)

  • 이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of the three types of fuel vaporizing device on the engine torque and exhaust emission was investigated. Among the three types of fuel vaporizing device designed for the experiments, a 88mm long device with mesh around the inside pipe showed stable lean mixture combustion up to 21:1 air-fuel ratio and reduced the exhaustion of CO and HC. Compared with the general trend in the decrease of engine torque it was observed that the decrease of engine torque in this lean mixture combustion with the new device was small.

  • PDF

Study on the LP Gas as a Fuel for Farm Kerosene Engine (농용 석유기관의 LPG 이용에 관한 연구)

  • 조기현;이승규;김성태;김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.189-198
    • /
    • 1997
  • In order to find out the potential of LP gas as a substitute fuel for small fm engine, experiments were carried out with a four-stroke spark-ignition engine which was modified from a kerosene engine mounted on the power tiller. Performance characteristics of kerosene and LP gas engine such as torque, volumetric efficiency fuel consumption rate, brake thermal efficiency, exhaust temperature, and carbon monoxide and hydrocarbon emissions were measured and analyzed under various levels of engine speed and compression ratio. The results were summarized as follows. 1. It showed that forque of LPG engine was 41% lower than that of kerosene engine with the same compression ratio, but LPG engine with compression ratio of 8.5 it was showed similar torque level to kerosene engine with compression ratio of 4.5. 2. Fuel consumption of LPG engine was reduced by about 5.1% and thermal efficiency was improved by about 2% compared with kerosene engine with the same compression ratio. With the incrasing of compression ratio in LPG engine fuel consumption rate decreased and thermal efficiency increased. 3. Exhaust temperature of LPG engine was about 15% lower than that of kerosene engine. Concenrations of emissions from LPG engine was affected insignificantly by compression ratios, and carbon monoxide emissions from the LPG engine was not affected by engine speed so much. The carbon monoxide and hydrocarbon emissions from LPG engine were about 94% and 66% lower than those of kerosene engine, respectively.

  • PDF

A Study on the Performance and Emission Characteristics According to the Coolant Temperature of Combustion Chamber Head of Spark Ignition Engine Fuelled with Kerosene (Coal Oil) (Kerosene (Coal Oil)을 사용한 스파크점화기관의 연소실헤드 온도 변화에 따른 엔진 성능 및 배기 특성에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.92-97
    • /
    • 2017
  • Kerosene (Coal oil) is a particularly attractive fuel because it is widely used to power jet engines of aircraft as jet fuel and some rocket engine. This paper describes the performance and emission characteristics according to the collant temperature of combustion chamber head of spark ignition engine fuelled with kerosene. As a result, the following knowledge is obtained. As the collant temperature of combustion chamber head is decreased, torque, volumetric efficiency and brake specific fuel consumption have been increased. When coolant temperature of combustion chamber lower, THC emission increased but CO and $NO_x$ emission decreased.

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.

Determination of empirical formula for instantaneous heat transfer coefficients in a S. I. engine (스파크 점화기관의 순간열전달계수의 경험식 결정)

  • Han, Seong-Bin;Gwon, Yeong-Jik;Lee, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1475-1484
    • /
    • 1997
  • A new empirical formula for instantaneous heat transfer coefficients was determined. The determination of this formula is in need for prediction of instantaneous value of heat transfer coefficients to analyze in more detail the time variation of heat transfer rate from gas to wall in combustion chamber of a spark ignition engine. As the result, following formula was determined. h=687 $p^{0.75}$ $U^{0.75}$ $D^{0.25}$ - $T^{-0.465}$ U(.theta.)=O.494 $V_{p}$ +0.73*10$^{6}$ (1.35 p dV/d.theta.+V dp/d.theta.) Using this empirical formula, the instantaneous heat transfer coefficients of gas in the combustion chamber of spark ignition engine was predicted and compared with experimental values.