• Title/Summary/Keyword: Spam

Search Result 284, Processing Time 0.022 seconds

Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties (그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석)

  • Jeong, Sihyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2020
  • As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.

Research on the Method of Blocking Spam Mails Sent in the Form of Batch-Arrival by Resending Sender-MTA (발송MTA의 재전송 기능을 이용한 동보 전송 스팸메일 차단 기법에 관한 연구)

  • Choi Myung-Jung;Hwang Chong-Sun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.568-570
    • /
    • 2005
  • 인터넷의 급속한 성장으로 인터넷과 E-mail의 사용자가 증가하게 되면서, E-mail은 많은 사람들이 정보를 주고 받는 대표적인 통신수단의 하나로 자리 잡게 되었다. 그러나, 편리하고 비용이 거의 들지 않기 때문에 개인이나 업체들의 광고 수단으로 악용되고 있으며, 이에 따라 스팸 메일로 인한 시간과 비용의 낭비가 크게 증가하고 있다. 본 논문에서는 메시지 규칙에 기반을 둔 필터링 방식이 아닌 동보 전송 형태의 스팸 메일을 차단할 수 있는 방법을 연구한다.

  • PDF

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

SPam-mail Filtering Using SVM Classifier (SVM 분류 알고리즘을 이용한 스팸메일 필터링)

  • 민도식;송무희;손기준;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.552-554
    • /
    • 2003
  • 전자우편은 기존 우편 기능을 대체하는 대표적인 정보 전달 수단으로 자리 잡고 있다. 전자매일 사용자의 증가에 따라 망은 기업들은 전자 메일을 통해 광고를 하게 되었다. 이에 따라 전자매일 사용자들은 인터넷 상에 개인 전자메일 주소가 노출됨으로 많은 스팸메일을 수신하게 되는데, 이것은 전자메일 사용자에게 많은 부담이 되고있다. 본 논문은 전자우편 문서내의 단어들을 대상으로 통계적 방법의 SVM을 이용하여 스팸메일을 필터링 하였으며, 학습 단계에서 단어 자질공간의 축소를 위해 DF값 변화에 따른 학습을 통하여 분류의 성능을 비교하였다. SVM의 성능 평가를 위해 확률적 방법의 나이브 베이지안과 벡터 모텔을 이용한 분류기와 성능을 비교함으로써 SVM 방법이 우수한 성능을 보임을 검증하였다.

  • PDF

Combating SIP Spam By Technical Means (SIP 기반 VoIP 환경에서 스팸 문제점과 대응 기술에 대한 고찰)

  • Choi Sang-Myung;Kim Eun-Sook;Kang Shin-Gak;Youm Heung-Youl
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.471-474
    • /
    • 2006
  • 기존 전화에 비해 저렴한 가격으로 서비스의 제공이 가능한 VoIP 서비스의 증가는 SIP 스팸이라는 역기능을 낳았다. SIP은 표준 VoIP 프로토콜로 현재 SIP 기반의 VoIP 서비스의 개발이 활발하게 진행 중에 있다. 이에 본 논문은 SIP 기반 VoIP 환경에서의 스팸 유형을 살펴본 후 이를 해결하기 위한 스팸 대응 기술로 기존의 이메일 스팸 대응 기술을 비교, 분석한다. 또한 이메일 스팸 대응 기술을 기반으로 제안된 현재 SIP 스팸 대응 기술을 알아보고 앞서 분석한 대응 기술의 SIP 기반 VoIP 환경에서의 적용 가능 여부를 생각하여 가장 적합한 스팸 대응 기술을 제시한다.

  • PDF

Weighting based User Behavior Pattern for Filtering Spam Mail (사용자 행동 패턴을 기반으로 가중치를 부여한 스팸 메일 필터링)

  • Han, A-Sung;Kim, Hyun-Jun;Jo, Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.389-394
    • /
    • 2007
  • 스팸 메일의 비율은 지속적으로 증가하여 최근 전체 이메일의 92.6%가 스팸 메일인 것으로 드러났다. 본 논문에서는 시간의 경과에 따른 사용자의 액션 패턴을 기반으로 사용자의 관심에 따른 가중치를 적용하여 스팸 메일 여부를 가리는 방법을 다룬다. 액션간의 관계와 액션 사이의 시간에 따라 가중치를 차별화함으로써 얼마나 높은 필터링 성능을 보일 수 있는 지, 또한 학습 속도 향상에 얼마나 기여할 수 있는지를 측정할 것이다. 실험에서는 실제 메일 데이터를 이용하여 베이지안 분류자, 가중치가 부여된 베이지안 분류자와 본 논문이 제안하는 시스템의 학습 성능의 향상 속도를 비교할 것이다. 또한 제안된 시스템이 Concept Drift와 적응 학습, 그리고 개인화를 어떻게 다룰 지를 보일 것이다.

  • PDF

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

Detecting spam mails using Text Mining Techniques (광고성 메일을 자동으로 구별해내는 Text Mining 기법 연구)

  • 이종호
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.35-39
    • /
    • 2002
  • 광고성 메일이 개인 당 하루 평균 10통 내외로 오며, 그 제목만으로는 광고메일을 효율적으로 제거하기 어려운 현실이다. 이러한 어려움은 주로 광고 제목을 교묘히 인사말이나 답신처럼 변경하는 데에서 오는 것이며, 이처럼 제목으로 광고를 삭제할 수 없도록 은폐하는 노력은 계속될 추세이다. 그래서 제목을 통한 변화에 적응하면서, 제목뿐만 아니라 내용에 대한 의미 파악을 자동으로 수행하여 스팸 메일을 차단하는 방법이 필요하다. 본 연구에서는 정상 메일과 스팸 메일의 범주화(classification) 방식으로 접근하였다. 이러한 범주화 방식에 대한 기준을 자동으로 알기 위해서는 사람처럼 문장 해독을 통한 의미파악이 필요하지만, 기계가 문장 해독을 통해서 의미파악을 하는 비용이 막대하므로, 의미파악을 단어수준 등에서 효율적으로 대신하는 text mining과 web contents mining 기법들에 대한 적용 및 비교 연구를 수행하였다. 약 500 통에 달하는 광고메일을 표본으로 하였으며, 정상적인 편지군(500 통)에 대해서 동일한 기법을 적용시켜 false alarm도 측정하였다. 비교 연구 결과에 의하면, 메일 패턴의 가변성이 너무 커서 wrapper generation 방법으로는 해결하기 힘들었고, association rule analysis와 link analysis 기법이 보다 우수한 것으로 평가되었다.

  • PDF

Spam-mail detection and interception system of PGP base (PGP 기반의 스팸메일 검출 및 차단 시스템)

  • Choi, Hong-Sik;Kim, Joong-Hwan;Kim, Sang-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.2379-2382
    • /
    • 2002
  • 요즘 전자우편(E-mail) 서비스를 사용하게 되면서, 스팸 메일이라고 불리 우는 광고성 메일이 무분별하게 전자우편에 침입하고 있다. 요즘과 같이 정보의 중요성과 개인의 사생활이 강조되는 시점에서 다른 사람이 중간에 메일을 가로채어 읽거나 해킹 하여 전혀 다른 내용으로 바꾸어 배포하거나 바뀐 내용을 전송하거나 과도한 스팸메일 때문에 자신의 메일 계정에 부하가 걸려서 중용한 메일을 못 받게 된다면 보통 심각한 일이 아닐 수 없다. 본 논문에서는 이것을 해결하기 위하여, PGP(Pretty Good Privacy)라는 기술과 문자열 처리를 이용하여 전자우편의 보안성 향상과 문자열 처리를 통해 스팸메일을 줄이는 방법을 제안한다.

  • PDF

Instance Based Learning Revisited: Feature Weighting and its Applications

  • Song Doo-Heon;Lee Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.6
    • /
    • pp.762-772
    • /
    • 2006
  • Instance based learning algorithm is the best known lazy learner and has been successfully used in many areas such as pattern analysis, medical analysis, bioinformatics and internet applications. However, its feature weighting scheme is too naive that many other extensions are proposed. Our version of IB3 named as eXtended IBL (XIBL) improves feature weighting scheme by backward stepwise regression and its distance function by VDM family that avoids overestimating discrete valued attributes. Also, XIBL adopts leave-one-out as its noise filtering scheme. Experiments with common artificial domains show that XIBL is better than the original IBL in terms of accuracy and noise tolerance. XIBL is applied to two important applications - intrusion detection and spam mail filtering and the results are promising.

  • PDF