• Title/Summary/Keyword: Spacing Ratio

Search Result 544, Processing Time 0.025 seconds

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Effects of Injection Configuration on Mixing in Supersonic Combustor

  • Sakamoto, Hayato;Matsuo, Akiko;Mitani, Tohru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.48-54
    • /
    • 2004
  • The effects of injector spacing s and injector diameter d on mixing are numerically investigated in supersonic combustor with perpendicular injection behind a backward-facing step. Simulations are reported for airstream Mach number of 2.4. Parameters are changed on following 4 cases to investigate the effects of injector configuration on mixing efficiency $\eta_m$. In the case of varying d or s, dynamic pressure ratio $Rq(=(pu^2)_j/(pu^2)_a)$ is also varied to keep bulk equivalence ratio $\Phi({\oe})Rq.d^2/s)$ constant. (l) Injector spacing s is varied at constant $\Phi$=0.5, 1, 2 for injector diameter d=6mm. In the case of $\Phi$=1, $\eta_m$ has its maximum value at s=24mm. The reason is that increase of $\eta_m$. , by widening spacing at Rq=constant competes with decrease of $\eta_m$ by increasing Rq at s=constant. When spacing is narrow, the flow field of vicinity of injector becomes two-dimensional because adjacent jets interferes each other. By widening spacing, air is easily entrained by three-dimensional effect. This mechanism also appears in the case of $\Phi$=0.5, 2 for d=6mm, and $\eta_m$. reaches its maximum value at s=24mm for $\Phi$=0.5 and at s=42mm for $\Phi$=2. (2) In the case of injector diameter d varied at $\Phi$=1 for s=30mm, $\eta_m$. has its maximum value at d=3mm. The reason is that decrease of $\eta_m$ by increasing injector diameter competes with increase of $\eta_m$ by decreasing Rq at d=constant.(3) In the case of s varied at $\Phi$=0.5, 1,2 for d=3mm, the injector spacing at which mixing efficiency has its maximum value is s= 18mm for $\Phi$=0.5, s=24mm for $\Phi$=1, s=24mm for $\Phi$=2. Therefore it is found that d=3mm and s=24mm can be optimum configuration over a range of $\Phi$=0.5~2.(4) The effect of h on the optimum spacing is investigated. s is varied for d=6mm at step height h=4, 6, 8mm. The simulation results do not show significant change on the step height.

  • PDF

The Effects of Microstrucutral Parameters on Bending Fatigue Properties of Heavily Drawn Pearlitic Steel Filaments used for Automotive Tires (타이어 보강용 고 탄소강 미세 강선의 굽힘 피로 성질에 미치는 미세 조직의 영향)

  • Yang Y. S.;Lim S. H.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.193-197
    • /
    • 2005
  • Influences of microstructure on high-cycle fatigue (HCF) limit of high carbon $(>0.7wt.\;\%)$ steel filaments used for tires have been investigated. A series of the fatigue tests was carried out depending on carbon content by using Hunter-type tester at a frequency of 60 Hz at a tension/compression stress of 900 to 1500 MPa. Microstructural changes of the filaments were identified in the lateral direction by using transmission electron microscopy (TEM). It was found that the mechanical properties, such as fatigue limit and tensile strength, were improved with increasing carbon content, which was mainly attributed to decreased lamellar spacing and cementite thickness. However, the fatigue ratio, which is defined as the ratio of the fatigue limit to the tensile strength, was reduced in a higher carbon range of 0.8 to $0.9\;wt.\%$, while the fatigue ratio was nearly constant in a lower carbon range of 0.7 to $0.8\;wt.\%$. Overall mechanical properties of the filaments, depending on carbon content, have been discussed in terms of the microstructural parameter change of lamellar spacing and cementite thickness. In addition, the variation of cementite morphology on the fatigue crack propagation of high carbon $(0.9wt.\;\%)$ filaments will be discussed.

  • PDF

A Stydy on Steel Wire Fiber Reinforced Refractory Castable (철근 캐스터블 내화물의 고온특성에 관한 연구)

  • 박금철;최영섭;한문희;장영재;박근원
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.69-74
    • /
    • 1980
  • This study deals with the wire content, wire diameter, aspect ratio , it's arrangement of steel, wire fiber and the sorts of castable which affected the character of steel wire fiber reinformced refractory castable. Two kinds of alumina based refractory castables, one is for 1650℃ and the other is for 1800℃, and stainless steel which is SUS 304 type 0.25, 0.34 , 0.37 and 0.50m/min diameter were used respectively. Aspect ratio was adjusted to 50, 75, 100 and steel fiber content was also adjusted to 1-4wt% each. The results of the experiment were as follows : 1. At firing temperature around 1,000℃, MOR is increased with increasing wire content and aspect ratio with decreasing firing temperature, which depends on the Romualdi's Fiber Spacing Theory. But for calculation of the fiber spacing, Swamy equation is more a aplicable to the extensive fiber mixing conditions. However, the condition differs from the above at firing temperature around 1,350℃ ,because of the degradation of wire and the progress of sintering of castable. 2. Linear change is getting larger corresponding to the increase of wire content, and the spaling resistivity is increasing corresponding to the increase of wire content and to aspect ratio, and with decreasing wire diameter. 3. Firing shrinkage under load is getting greater as higher wire content, and the shrinkage of the test pieces which fiber is vertically oriented is getting greater than the test pieces which fiber is randomly oriented.

  • PDF

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Longitudinal Reinforcement Ratio and Size Effect (철근콘크리트보의 인장철근비와 크기효과에 의한 전단강도 특성 연구)

  • Yu, In-Geun;Noh, Hyung-Jin;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.117-126
    • /
    • 2020
  • The main objective of this experimental study is to investigate shear strength of reinforced concrete beams according to longitudinal reinforcement ratio (ρ) and size effect. In order to find out the shear strength according to the tensile reinforcement ratio, in particular, the main variables are 100%, 75% and 50% of ρ=0.01 which is widely used in construction field. A total of twelve RC beams were tested under 4-point loading conditions. In addition to the existing proposal equations, the theoretical values such as KBC and ACI equations are compared with the experimental data. Through this analysis, this study is designed to provide more reasonable equations for shear design of reinforced concrete beams. When shear reinforcement bar spacing of nine specimens (R*-1, R*-2, and R*-3 series) fixed as d/s=2.0 and three specimens of R*-4 series fixed as d/s=1.5 are compared, the shear strength of two groups showed similar values. As a result, the current standard of d/s=2.0 for shear reinforcement bar spacing may be somewhat alleviated.

Elastic settlements of identical angular footings in close proximity

  • R. Sarvesha;V. Srinivasan;Anjan Patelb
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.193-207
    • /
    • 2023
  • In general, the numerous classical approaches available in the literature can anticipate the settlement of shallow foundations. As long as the footings are not in close proximity to other subsurface buildings, the findings achieved using these methods are legitimate and acceptable. However, due to increased urbanisation and land scarcity, footings are frequently built close together. As a result, these footings' settlement behaviour differs from those of isolated footings. A simpler approach for assessing the settlement behaviour of two square or rectangular footings placed in close proximity is presented in this work. A Parametric study has been carried out to examine the interference effect on the settlement of these footings placed in close vicinity on the surface of a homogeneous, isotropic and elastic soil medium. The interaction factors are examined by varying the different aspect ratios (L/B), clear spacing ratio (S/B) and intensity of loading on the right footing with respect to the left footing. Further, variation of the settlement ratio (δ/B) with respect to embedment depth ratio Df/B is examined. For square and rectangular footings, the interference settlement profile is also investigated by varying the clear spacing ratio (S/B) and the degree of loading. The results were compared to 3D finite element analysis and experimental data that were available.

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

Effect of the spanwise grid spacing and treatment of convection term in DES

  • Song, Chi-Su;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • A two-dimensional backward facing step flow was comptuted using a Detached Eddy simulation(DES) based on the SST turbulence model. The expansion ratio(ER) was 1.125 and the Reynolds number based on the step height and the mean velocity in the upstream channel was 37,500. The flow condition was the same as with the experimental research[1]. The reattachment length, oscillatory characteristics of the flow and the coherent structures of the present simulation were compared to demonstrate the improtance of spanwise grid spacing.

Crystal Structure of Tension Wood by X-ray Diffraction Method (X 선(線) 회절법(回折法)에 의한 Tension Wood의 결정구조(結晶構造) 해석)

  • Lee, Won-Yong;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.73-78
    • /
    • 1993
  • Crystal structure of tension, opposite and lateral wood of Platanus orientalis L. were analysed in some aspects of crystallinity index, crystallite size, d-spacing of (200) and (004), and integrated intensity ratios with X-ray diffraction method. Crystallinity index and crystallite width in tension wood appeared somewhat larger than opposite or lateral wood. However, d-spacing and integrated intensity ratios were nearly identical irrespective of tension, opposite, and lateral wood.

  • PDF