• Title/Summary/Keyword: Spacer grids

Search Result 66, Processing Time 0.032 seconds

CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR

  • Wang, Yingjie;Wang, Mingjun;Ju, Haoran;Zhao, Minfu;Zhang, Dalin;Tian, Wenxi;Liu, Tiancai;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1386-1395
    • /
    • 2020
  • High fidelity nuclear reactor fuel assembly simulation using CFD method is an effective way for the structure design and optimization. The validated models and user practice guidelines play critical roles in achieving reliable results in CFD simulations. In this paper, the international benchmark MATiS-H is studied carefully and the best user practice guideline is achieved for the rod bundles simulation. Then a 5 × 5 rod bundles model in the advanced pressurized water reactor (PWR) is established and the detailed three-dimensional thermal-hydraulic characteristics are investigated. The influence of spacer grids and mixing vanes on the flow and hear transfer in rod bundles is revealed. As the coolant flows through the spacer grids and mixing vanes in the rod bundles, the drastic lateral flow would be induced and the pressure drop increases significantly. In addition, the heat transfer is enhanced remarkably due to the strong mixing effects. The calculation results could provide meaningful guidelines for the design of advanced PWR fuel assembly.

Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod (경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성)

  • 강흥석;윤경호;송기남;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.