• Title/Summary/Keyword: Spacer Design

Search Result 153, Processing Time 0.044 seconds

Design of Insert type supports for a tube bundle of a large diameter (큰 외경을 갖는 튜브집합체의 삽입형 지지체 설계)

  • Kim, Jae-Yong;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Lee, Kang-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1373-1376
    • /
    • 2008
  • A supporting structure for a long tube bundle of a large diameter is considered in this paper. The primary purpose of the present study is to develop a spacer grid structure for a so-called "dual cooled nuclear fuel", which has been being studied for a nuclear power uprate. The outer diameter of the fuel rod increases considerably from the conventional one. So a completely new shape of the supporting structure (spacer grid) needs to be developed. One of the challenges is to insert a supporting tube into the cross points of the grid straps. To meet a supporting performance, the load vs. displacement characteristics should be obtained. So the present study focuses on the finite element analysis technology to evaluate the characteristics through a parametric study. As a result, major influencing parameters are investigated for an optimized spacer grid design.

  • PDF

Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines (스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석)

  • Oh, Yun-Ji;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

Set-up of Mechanical/Structural Test Facilities on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 시험장치 구축)

  • Song, Kee-Nam;Yoon, K.H;Kang, H.S;Kim, H.K
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.355-360
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized light water reactor(PLWR) are scrutinized from the mechanical/structural point of view. As a result of the scrunity, mechanical/structural test facilities on the spacer grid of the PLWR Fuel are set up in KAERI to find out their mechanical/structural performance.

  • PDF

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

A Morphometric Study of the Lumbar Interspinous Space in 100 Stanford University Medical Center Patients

  • Jang, Donghwan;Park, Seoungwoo
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.261-266
    • /
    • 2014
  • Objective : With the increased use of interspinous spacers in the treatment of lumbar stenosis, knowledge of the geometry of the interspinous space is important. To prevent dislodgment of an interspinous spacer, the accurate depth and width of the interspinous space needs to be established to facilitate the best intraoperative selection of correct spacer size. Methods : To determine the depth and width of the interspinous space, two methods are available which utilize plain film and magnetic resonance imaging (MRI). Data analysis of the interspinous depth and width was undertaken in 100 patients. Results : The standard deviations were variable, since skin thickness (zone 1) was altered by sex and age. The difference in the zone 1 distance between adjacent interspinous processes varied according to gender (p<0.05), but was not influenced by age [p=0.32 by analysis of variance between groups (ANOVA)]. Zone 2, the supraspinous, and zone 3, the interspinous ligament depths, comprise the operative working area during insertion of an interspinous spacer. There were no differences with regard to gender or age (p>0.05). For zones 6 and 7, the interspinous distances at the narrowest and widest points, respectively, were found to decrease with the aging process, but the decrease was not statistically significant. There were no differences with regard to gender (p>0.05). Conclusion : This study provides additional information on the interspinous space. This statistical data are valuable for use in the design of interspinous spacers.

Shape Design of A Spacer for 800kV GIS Interrupter (800kV급 GIS의 모델차단부용 스페이서의 형상설계)

  • Shin, Y.J.;Chang, K.C.;Park, K.Y.;Chong, J.K.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1639-1642
    • /
    • 1994
  • The severe conditions such as rated voltage of 800kV, gas pressure of $5kg/cm^2$ and rated lighting impulse withstand voltage of 2400kV were adopted for the design of spacers in the 800kV GIS to give a sufficient design margin. The design criteria on the maximum electric field strength of the center conductor and the insulator surface were established by considering the insulator surface characteristics, electrode area and surface effects in the unequal electric field strength of the given gap. The design parameters such as inter/outer envelope degree, thickness, inter/outer inserts, triple junction gap were determined by calculating the electric field using FLUX-2D program package and by referring to the published papers. The mechanical stress analysis was conducted on the feasible model spacers that showed good electric field distributions to confirm the sufficient mechanical design margin. The 800kV spacer designed as described above is now in the process of manufacturing.

  • PDF

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

Non-Overlapped Single/Double Gate SOI/GOI MOSFET for Enhanced Short Channel Immunity

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.136-147
    • /
    • 2009
  • In this paper we analyze the influence of source/drain (S/D) extension region design for minimizing short channel effects (SCEs) in 25 nm gate length single and double gate Silicon-on-Insulator (SOI) and Germanium-on-Insulator (GOI) MOSFETs. A design methodology, by evaluatingm the ratio of the effective channel length to the natural length for the different devices (single or double gate FETs) and technology (SOI or GOI), is proposed to minimize short channel effects (SCEs). The optimization of non-overlapped gate-source/drain i.e. underlap channel architecture is extremely useful to limit the degradation in SCEs caused by the high permittivity channel materials like Germanium as compared to that exhibited in Silicon based devices. Subthreshold slope and Drain Induced Barrier Lowering results show that steeper S/D gradients along with wider spacer regions are needed to suppress SCEs in GOI single/double gate devices as compared to Silicon based MOSFETs. A design criterion is developed to evaluate the minimum spacer width associated with underlap channel design to limit SCEs in SOI/GOI MOSFETs.

Design of the Spacers Arrangement for Field Emission Displays using Topology Optimization Technique (위상 최적화 기법을 잉요한 FED용 스페이서의 배치 설계)

  • Chung, Tae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.49-54
    • /
    • 2000
  • A field emission display has spacers separating the emitting base and display face. The arrangement of the spacer is important for maintenance of required clearance, endurance of bending stresses, and efficient vacuum sealing. Topology optimization technique with material density was introduced to select the best position of the spacers from the available positions. The displacement and Von Mises stress distribution of the panels with optimal spacers were calculated by finite element method. Also the design guide for adding eliminating spacers was proposed.

  • PDF