• 제목/요약/키워드: Spacer Design

검색결과 153건 처리시간 0.028초

호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계 (Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology)

  • 이재준;송기남;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

가스절연 개폐장치에서 유전율 구배를 갖는 고체 절연물의 형상 최적화 (Shape Optimization of a Permittivity Graded Solid Insulator in a Gas Insulated Switchgear)

  • 주흥진;김동규;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.467-473
    • /
    • 2012
  • A functionally graded material (FGM) spacer, which the distribution of dielectric permittivity inside an insulator changes spatially, can considerably reduce the electric field concentration around a high-voltage electrode and along the gas-insulator interface when compared to a conventional spacer with a uniform permittivity distribution. In this research, we propose the FGM spacer with an elliptical permittivity distribution instead of that with a distribution of dielectric permittivity varying along a radial direction only in order to improve efficiently the insulation capability. The optimal design of the elliptical FGM spacer configuration is performed by using the response surface methodology (RSM) combined with the steepest descent method (SDM).

A Study of Neutronics Effects of the Spacer Grids in a Typical PWR via Monte Carlo Calculation

  • Tran, Xuan Bach;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.33-42
    • /
    • 2016
  • Spacer grids play an important role in maintaining the proper form of the fuel assembly structure and ensuring the safety of reactor core design. This study applies the Monte Carlo method to the analysis of the neutronics effects of spacer grids in a typical pressurized water reactor (PWR). The core problem used to analyze the neutronics effects of spacer grids is a modified version of Korea Advanced Institute of Science and Technology benchmark problem 1B, based on an Advanced Power Reactor 1400 (APR1400) core model. The spacer grids are modeled and added to this test problem in various ways. Then, by running MCNP5 for all cases of spacer grid modeling, some important numerical results, such as the effective multiplication factor, the spatial distributions of neutron flux, and its energy spectrum are obtained. The numerical results of each case of spacer grid modeling are analyzed and compared to assess which type has more advantages in accuracy of numerical results and effectiveness in terms of geometry building. The conclusion is that the most realistic modeling for Monte Carlo calculation is the "volume-preserving" streamlined heterogeneous spacer grids, but the "banded" dissolution spacer grids modeling is a more practical yet accurate model for routine (deterministic) analysis.

Numerical Analysis of One Drop Filling Process with Photo-definable Spacer

  • Lee, Woo-Shik;Yoo, Gi-Chun;Jeon, Baek-Kyun;Kim, Choong-Sik;Kim, Ki-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.500-503
    • /
    • 2002
  • In this paper, we demonstrate the deformation of TFT-LCD panel using numerical analysis based on the finite element method. To make better uniform cell gap and less stress at a photo-definable spacer (spacer), we have investigated process and design factors such as amount of liquid crystal (LC), spacer density, area, height, and material property. Furthermore we optimized design factors and achieved the robust design through the simulation.

  • PDF

가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석 (Design and Analyses on the Spacer Grid of the PLWR Fuel)

  • 송기남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF

Mechanical robustness of AREVA NP's GAIA fuel design under seismic and LOCA excitations

  • Painter, Brian;Matthews, Brett;Louf, Pierre-Henri;Lebail, Herve;Marx, Veit
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.292-296
    • /
    • 2018
  • Recent events in the nuclear industry have resulted in a movement towards increased seismic and LOCA excitations and requirements that challenge current fuel designs. AREVA NP's GAIA fuel design introduces unique and robust characteristics to resist the effects of seismic and LOCA excitations. For demanding seismic and LOCA scenarios, fuel assembly spacer grids can undergo plastic deformations. These plastic deformations must not prohibit the complete insertion of the control rod assemblies and the cooling of the fuel rods after the accident. The specific structure of the GAIA spacer grid produces a unique and stable compressive deformation mode which maintains the regular array of the fuel rods and guide tubes. The stability of the spacer grid allows it to absorb a significant amount of energy without a loss of load-carrying capacity. The GAIA-specific grid behavior is in contrast to the typical spacer grid, which is characterized by a buckling instability. The increased mechanical robustness of the GAIA spacer grid is advantageous in meeting the increased seismic and LOCA loadings and the associated safety requirements. The unique GAIA spacer grid behavior will be incorporated into AREVA NP's licensed methodologies to take full benefit of the increased mechanical robustness.

지지격자 스프링으로 다점 지지된 환형 핵연료봉의 고유 진동 해석 (Vibration Analysis for a Fuel Rod Continuously Supported by a Spacer Grid)

  • 강흥석;윤경호;김형규;송기남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.639-646
    • /
    • 2000
  • Estimation for the vibration behavior of a nuclear fuel rod with its supporting structure called spacer grid has been made by the both of experimental and analytical methods in order to compare the supporting performance of two kinds of the spacer grids which have been newly developed. For the analytical method the fuel rod was modeled as a beam continuously supported by the springs of the spacer grid, and ABAQUS computer code was utilized. After a modal testing was performed for the fuel rod supported by five spacer grids, two results has been compared to justify and compensate the both methods. It has been found that the spring design of the spacer grid could give significant effect to natural frequency and vibration amplitude of the fuel rod.

  • PDF

삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상 (Spacer Grid Assembly with Sliding Fuel Rod Support)

  • 송기남;이상훈
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.843-850
    • /
    • 2010
  • 지지격자체는 경수로 핵연료집합체의 가장 중요한 핵심 구조부품이다. 지지격자체 설계시의 고려사항은 원자로 운전중에 연료봉의 지지건전성을 유지하도록 하는 것이다. 본 연구에서는 연료봉이 유동기인진동에 의해서 진동할 때 연료봉과 연료봉 지지부 사이에서 상대변위를 완화해 줌으로서 연료봉의 프레팅 마모손상 가능성을 감소시킬 수 있는 이동 가능한 연료봉 지지부로 구성된 새로운 지지격자체 형상을 제안하였다. 아울러 제안된 이동 가능 지지부의 연료봉 지지특성을 유한요소해석을 통해 분석하였다.

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

경수로 핵연료집합체 지지격자체의 횡방향 충격강도 연구 (Study on the Lateral Dynamic Crush Strength of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly)

  • 송기남;이상훈;이수범;이재준;박경진
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1175-1183
    • /
    • 2010
  • 지지격자체는 경수로 핵연료집합체의 가장 중요한 핵심 구조부품 중에 하나이다. 질칼로이 지지격자체 설계시의 우선적으로 고려해야 할 사항은 지지격자체가 원자로심에서 냉각수의 심한 수두손실을 유발하지 않으면서 지진사고를 고려한 설계하중 하에서 충분한 횡방향 충격강도를 갖도록 하는 것이다. 본 연구에서는 시험과 유한요소해석을 통해 지지격자체의 횡방향 충격강도에 영향을 주는 인자들에 대한 분석을 수행하였고, 지지격자체 제조용 질칼로이 원자재 소요량을 획기적으로 줄이면서 지지격자체의 횡방향 충격강도를 개선할 수 있는 방안을 제시하였다.