• 제목/요약/키워드: Spaceplane

검색결과 5건 처리시간 0.02초

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF

Development Plan of the Next ATREX Engine

  • Kobayashi, Hiroaki;Satou, Ttsuya;Tanatsugu, Nobuhiro;Taguchi, Hideyuki;Ohta, Toyohiko;Kawai, Tsuneo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.693-698
    • /
    • 2004
  • This paper describes development status and program of ATREX engine as a propulsion system of future spaceplane. Development activities using ATREX-500 engine from 1990 were finished in 2003 with large number of outcomes. We made system-level validation of the hydrogen fuel turbojet engine with air precooling device under sea level static condition. As a next step, we started design of the flight-type ATREX engine with large thrust and lightweight.

  • PDF

우주비행기 열보호 시스템의 설계 및 개발 현황 (Design and Development Status of a Thermal Protection System for a Spaceplane)

  • 윤용식;최기혁
    • 항공우주시스템공학회지
    • /
    • 제12권3호
    • /
    • pp.79-85
    • /
    • 2018
  • 지구 재진입 비행체와 태양계 행성의 대기권 진입 비행체의 개발 요구가 증가하고 있다. 일반적으로 대기권 진입에는 대기 항력과 가열 환경이 동반하여 이에 따른 열보호 자재의 선정과 열보호 시스템의 설계와 적용이 매우 중요하다. 본 논문에서는 대기권 진입 환경과 우주 비행기의 열보호 자재의 종류와 특징을 고찰하였다. 그리고 우주비행기에 사용하는 열보호 시스템의 설계 및 활용 현황 등에 대하여 기술하였다.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF