• Title/Summary/Keyword: Spaced type

Search Result 73, Processing Time 0.022 seconds

Tillage Operational Analysis Based on Soil Moisture Content, Machine Speed, and Disc Space of Compact Disc Harrow

  • Okyere, Frank Gyan;Moon, Byeong Eun;Qasim, Waqas;Basak, Jayanta Kumar;Kahn, Fawad;Kang, Dae Sik;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.161-172
    • /
    • 2018
  • Purpose: During tillage operations, the selection of a working machine (tool) depends on the soil conditions as well as the type of tillage operation to be performed. The goal of this research was to ascertain the effects of varying working machine parameters of a compact disc harrow on tillage operations under various soil moisture content (SMC) conditions. Methods: The working machine parameters were the disc spacing and machine speed. The tillage parameters under investigation were the soil inversion ratio (SIR), tillage cutting depth (TCD), and soil clod breakage ratio (SCB). To determine the SIR, the areas of the white regions before and after tillage were obtained. The ratio of the difference of the areas of the white regions before and after tillage to the area of the white regions before tillage was considered as the SIR. The SCB was obtained as the ratio of the weight of soil clods after sieving with a mesh size of <0.02 m to the total weight of the soil clods before sieving. The soil TCD was measured using a tape measure at random points after the tillage operation. The resulting data were statistically analyzed in a one-way analysis of variance. Results: The highest soil inversion was achieved when the machine speed was 0.2 m/s with the disc spaced at 0.2 m in the 16.5% SMC. At a 0.4-m/s machine speed and 0.3-m disc spacing the highest soil breakage was achieved in the 26.5% SMC. The highest TCD was achieved at a 0.2-m/s machine speed and 0.2-m disc spacing in the 16.5% SMC. Conclusions: It was concluded that varying the working machine parameters, such as the disc spacing and machine speed, could significantly affect the soil inversion and soil clod breakage; however, it had no significant impact on the TCD.

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.

The Restoration and Conservation of Indigo Paper in the Late Goryeo Dynasty: Focusing on Transcription of Saddharmapundarika Sutra(The Lotus Sutra) in Silver on Indigo Paper, Volume 7 (고려말 사경의 감지(紺紙) 재현과 수리 - 이화여자대학교 소장 감지은니묘법연화경을 중심으로 -)

  • Lee, Sanghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.52-69
    • /
    • 2021
  • The transcriptions of Buddhist sutra in the Goryeo Dynasty are more elaborate and splendid than those of any other period and occupy a very important position in Korean bibliography. Among them, the transcriptions made on indigo paper show decorative features that represent the dignity and quality that nobles would have preferred. Particularly, during the Goryeo Dynasty, a large number of transcriptions were made on indigo paper, often in hand-scrolled and folded forms. If flexibility was not guaranteed, the hand-scrolled form caused inconvenience and damage when handling the transcription because of the structural limitations of the material that is rolled up and opened. It was possible to overcome these shortcomings by changing from the hand-scrolled to the folded form to obtain convenience and structural stability. The folded form of the transcription utilizes the same principle as the folding screen, so it is a structure that can be folded and unfolded, and it is made by connecting parts at regularly spaced intervals. No matter how small the transcription is, if it is made of thin paper, it is difficult to handle it and to maintain its shape and structure. For this reason, the folded transcription was usually made of thick paper to support the structure, and the cover was made thicker than the inner part to protect the contents. In other words, the forded form was generally manufactured to suit the characteristics of maintaining strength by making the paper thick. Because a large amount of indigo paper was needed to make this type of transcription, it is assumed that there were craftsmen who were in charge only of dark dyeing the papers. Usually, paper dyeing requires much more dye than silk dyeing, and dyeing dozens of times would be required to obtain the deep indigo color of the base of the transcription of Buddhist sutra in the Goryeo Dynasty. Unfortunately, there is no record of the Goryeo Dynasty's indigo blue paper manufacturing technique, and the craftsmen who made indigo paper no longer remain, so no one knows the exact method of making indigo paper. Recently, Hanji artisans, natural dyers, and conservators attempted to restore the Goryeo Dynasty's indigo paper, but the texture and deep colors found in the relics could not be reproduced. This study introduces the process of restoring indigo paper in the Goryeo Dynasty through collaboration between dyeing artisans, Hanji artisans, and conservators for conservation of the transcription of Buddhist sutra in the late Goryeo dynasty, yielding a suggested method of making indigo paper.