• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.025 seconds

Development of Cryogenic Propellant Filling System for Launch Vehicle (발사체 극저온 추진제 충전시스템 개발)

  • Yu, Byung-Il;Kim, Ji-Hoon;Park, Pyun-Gu;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.676-677
    • /
    • 2010
  • In Naro Space Center, Naro launch vehicle launched 2 times. Launch pad for Naro launch vehicle in Naro space center equipped propellant feeding facility for operating launch process. This paper studied development process and operating method for liquid oxygen filling system of cryogenic propellant systems in launch pad propellant feeding facility.

  • PDF

Conceptual Design of Underwater Jet Propulsion System using Catalytic Decomposition of Hydrogen Peroxide (과산화수소의 촉매 분해를 활용한 수중 제트 추진 시스템 개념 설계)

  • Baek, Seungkwan;Kang, Hongjae;Ahn, Byeonguk;Yun, Yongtae;Lee, Jaeho;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.120-127
    • /
    • 2017
  • High temperature oxygen and water vapor was generated from catalytic decomposition of rocket grade highly concentrated hydrogen peroxide, and monopropellant thruster system was developed and applied into space propulsion system. In this research, background research and conceptual design of underwater propulsion system using catalytic decomposition of hydrogen peroxide was progressed. Two types of system was designed with different steam injection methods. Propulsion system that has ring-type steam injector was manufactured and performance estimation of system was performed with different nozzle exit area. Performance evaluation with central steam injection type jet engine will be progressed in the future.

  • PDF

Preliminary Study of Micro Cold Gas Thruster

  • Moon, Seonghwan;Oh, Hwayollng;Huh, Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.617-621
    • /
    • 2004
  • Miniaturization of subsystems including propulsion systems is recent trends in spacecraft technology. Small space vehicle propulsion is not only a technological challenge of a scaling system down, but also a combination of fundamental flow/combustion constraints. In this paper, physical constraints of micronozzle for cold gas micro-thruster are reviewed and discussed. Method to measure small thrust are also described.

  • PDF

Doubled Thrust by Boundary Layer Control in Scramjet Engines in Mach 4 and 6

  • Mitani, Tohru;Sakuranaka, Noboru;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.734-741
    • /
    • 2004
  • Boundary layer ingestion in airframe-integrated scramjet engines causes engine stall (“engine un start” hereafter) and restricts engine performance. To improve the unstart characteristics in engines, boundary layer bleed and a two-staged injection of fuel were examined in Mach 4 and Mach 6 engine tests. A boundary layer bleed system consisting of a porous plate, an air coolers, a metering orifice and an ON/OFF valve, was designed for each of the engines. First, a method to determine bleed rate requirements was developed. Porous plates were designed to suck air out of the Mach 4 engine at a rate of 200 g/s and out of the Mach 6 engine at a rate of 30 g/s. Air coolers were then optimized based on the bleed airflow rates. The exhaust air temperature could be cooled below 600 K in the porous plates and the compact air coolers. The Mach 4 engine tests showed that a small bleed rate of 3% doubled the engine operating range and thrust. With the assistance of two-staged fuel injection of H2, the engine operating range was extended to Ф0.95 and the maximum thrust was tripled to 2560 N. The Mach 6 tests showed that a bleed of 30 g/s (0.6% of captured air in the engine) extended the start limit from Ф0.48 to Ф1 to deliver a maximum thrust of 2460 N.

  • PDF

Determination of Cyclogram for Liquid-Propellant Rocket Engine

  • Ha, Seong-Up;Kwon, Oh-Sung;Lee, Jung-Ho;Kim, Byoung-Hun;Kang, Sun-Il;Han, Sang-Yeop;Cho, In-Hyun;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • A vertical test stand based on launcher propulsion system was constructed and several tests for the determination of cyclogram were carried out. To make an accurate estimation, static and dynamic pressures were measured and analyzed. Especially, static pressure measurements using fast response sensors without extension tubes were used to determine operation sequence more evidently. The standard operation times of final valves were determined in cold flow tests with an engine head, and fire formation time in combustion chamber was checked in an ignition test with an ignitor only. On the basis of these tests, ignition sequence was established and combustion test cyclogram was finally determined. According to combustion test, test results were well matched with the determined cyclogram within 0.05 sec.

Aerodynamic Characteristics of the Blended-Wing-Body for the Position and Aspect Ratio of the Inlet and Outlet of an Embedded Distributed Propulsion System (Embedded Type 분산 추진 장치의 입·출구 형상 및 위치 변화에 따른 융합익기의 공력해석)

  • Kim, Hyo-Seop;Choi, Hyun-Min;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.467-474
    • /
    • 2012
  • UAVs for reconnaissance and intelligence operations require long endurance capability, which demands high efficiency of the propulsion system. The distributed propulsion system(DPS) generates the thrust by replacing a large propulsion system with a number of small propulsion systems. A DPS distributed along the wing span can produce gains in propulsion efficiency by reducing ejection velocity. Also, the ingestion of boundary layers through the distributed DPS inlet and ejecting flow from the outlet can improve the lift to drag ratio of the vehicle. This study investigates the effects of locations and size of the inlet and outlet of the DPS on the blended-wing-body design based on Eppler 337 airfoil, with a CFD tool. The fans in the DPS are modeled as actuator disks for computational efficiency. The best location and aspect ratio of the inlet and outlet are found from lift-to-drag ratio and pitching moment considerations.

A Study on Pressure Control for Variable Thrust Solid Propulsion System Using Cold Gas Test Equipment (상온기체 모사장치를 이용한 가변추력 고체추진기관의 압력제어 연구)

  • Lee, Ho-Sung;Lee, Do-Yoon;Park, Jong-Seung;Kim, Joung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.76-81
    • /
    • 2009
  • A nonlinear pressure controller to actively regulate the thrust of a solid propulsion system is presented. To compensate for the parametric uncertainties with respect to the chamber pressure induced by changing nozzle throat area, Lyapunov-based parameter adaptation method has been applied. In order to verify the effectiveness of the proposed control method, the experiments were carried out using the cold gas test equipment that can simulate the operating environment of variable thrust solid propulsion system. The experiment results show that the nonlinear pressure controller has better performance than conventional P and PI controller.

Structural Analysis of Lift-Fan Rotor for Jet-VTOL Aircraft

  • Hojo, Masahiro;Ogawa, Akinori;Saito, Yoshio;Hashimoto, Ryosaku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.521-523
    • /
    • 2004
  • The Japan Aerospace Exploration Agency (JAXA) has proposed new vertical take-off and landing (VTOL) aircraft known as the Jet-VTOL aircraft shown in Fig.1. The Jet-VTOL aircraft is based on a canard wing configuration. The aircraft has the clustered lift-fans mounted near the center of gravity for vertical flight, and has the clustered fans mounted beside the vertical tail for cruise flight. Both fans are driven by the core engine mounted inside the aft end of fuselage. The propulsion system is innovative and attractive not to be seen even in the world.

  • PDF

A Construction Scheme of Control System in a Ground Hot-firing Test Facility (지상연소시험설비의 제어시스템 구축 방안)

  • Lee, Kwang-Jin;Kim, Ji-Hoon;Kim, Seung-Han;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.468-471
    • /
    • 2012
  • This paper describes a construction scheme of hot backup or triple modular redundancy control system in a ground hot-firing test facility to carry out performance assessment of propulsion system used in a space launch vehicle. It was possible for a hot backup redundancy control system with manual operated console to simulate TMR control system. A console layout of control system in control center to restrict imprudent works of operators was proposed.

  • PDF

Evalution of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Jo, Sang-Yeon;Kim, Yong-Uk;O, Seung-Hyeop;Park, Chan-Bin
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.155-158
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated applied to the liquid rocket engine of KSR-Ⅲ.Ȁ

  • PDF