• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.027 seconds

The Past and Future Perspectives of Hydrogen Peroxide as Rocket Propellants (발사체 추진제로서 과산화수소의 과거와 미래전망)

  • Ha, Seong-Up;Kwon, Min-Chan;Seo, Kyoun-Su;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.717-728
    • /
    • 2009
  • In the field of rocket propulsion system hydrogen peroxide has been used as mono-propellant and as the oxidizer of bi-propellants. At the beginning, hydrogen peroxide was used as mono-propellant for thrusters, but later it had been replaced by hydrazine, which has better specific impulse and storability. On the other hand, to drive turbo-pumps, hydrogen peroxide is still being utilized. As the oxidizer of bi-propellants it was used until 1970's and from 1990's hydrogen peroxide once again got back to developer's interest, because one of the recent development purposes of rocket propulsion system is low-cost and ecologically-clean. Until now the storability of hydrogen peroxide has been remarkably improved. The combination of Kerosene/$H_2O_2$ also shows similar accelerating performance to Kerosene/$LO_x$ combination because of higher propellant density and higher O/F ratio, even though the propulsion performance is not as good as the combination of Kerosene/$LO_x$. Moreover, its combustion products are much cleaner than Kerosene/$LO_x$ combination.

Introduction of Thrust Vector Control System and Control Valve Development for Space Launch Vehicles (우주발사체용 추력벡터제어 시스템 및 제어밸브류 개발 현황 소개)

  • Lee, Je-Dong;Park, Bong-Kyo;Park, Ho-Youl;Kim, Sang-Beom;Jun, Pil-Sun;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.613-615
    • /
    • 2009
  • This paper is to introduce Hanwha Aerospace R&D Center's development status of TVC(Thrust Vector Control) system and control valves for Korean space launch vehicles. With the successful development of KSR-III TVC system, Hanwha have developed TVC system and RCS control valves for KSLV-I. Also, in the advance research area of KSLV-II, Hanwha have participated in LOx and fuel flow control valves and LOx shut-off valve development in the engine supply system. Based on the accumulated experiences and technologies in the aerospace key components and system development, Hanwha will make an important contribution to KSLV-II development in the future.

  • PDF

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

Analysis on Flow Control Method for Simultaneous Fuel Filling of the Korea Space Launch Vehicle-II (한국형발사체 연료 동시충전을 위한 유량제어 방식에 대한 고찰)

  • Yeo, Inseok;Lee, Jaejun;An, Jaechel;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.5-13
    • /
    • 2017
  • To lunch the Korea Space Launch Vehicle-II(KSLV-II), the second launch complex will be constructed on the Naro Space Center and Kerosene Filling System (KFS) will be also installed newly. KFS of KSLV-II launch complex system is being designed based on Naro Launch Complex. But this must supply fuel to fuel tanks of the vehicle with only a supply pump because KSLV-II is a 3-stage launch vehicle unlike Naro Launch Vehicle or Test Launch Vehicle (TLV). A sudden rise of pump output pressure is recognized during fuel filling scenario selection process. This occurs because return flow can not actively deal with a lot of flow change using flow control method of orifice type. To solve this problem, it is verified that fuel can be stably supplied by installation of accumulator and an appropriate adjustment of filling mode change sequence through flow analysis of various cases.

  • PDF

Analysis on Flow Control Method for Simultaneous Fuel Filling of the Korea Space Launch Vehicle-II (한국형발사체 연료 동시충전을 위한 유량제어 방식에 대한 고찰)

  • Yeo, Inseok;Lee, Jaejun;An, Jaechel;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.132-140
    • /
    • 2018
  • To lunch the Korea Space Launch Vehicle-II(KSLV-II), a second launch complex will be built at the Naro Space Center, and a Kerosene Filling System (KFS) will be installed. KFS of KSLV-II launch complex system is being designed based on Naro Launch Complex. But this must supply fuel to fuel tanks of the vehicle with only a supply pump because KSLV-II is a 3-stage launch vehicle unlike Naro Launch Vehicle or Test Launch Vehicle (TLV). A sudden rise of pump output pressure is recognized during fuel filling scenario selection process. This occurs because return flow can not actively deal with much flow change using the orifice-type flow-control method. To solve this problem, it is verified that fuel can be stably supplied by installing an accumulator, designed for appropriate adjustment of filling-mode change sequence via flow analysis of various cases.

Avionics System Design Trend for The Launch Vehicle (발사체 에비오닉스 개발 동향)

  • Kim, Joo Nyun;Lim, You-Chol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Low cost launch vehicle for next-generation is underway in advanced space countries such as the United States, Europe, Japan and China. This paper surveys the latest technological trends in avionics system, including ground management system. In the case of on-board equipment, to make short the development period and reduce the cost, the equipment is standardized and modularized for each functions to flexibly respond to changes in system requirements. In addition, a network is applied to all inter-equipment interfaces and a powerful self-diagnostic function is included in the equipment to realize automation/simplification of the interface with the ground system, and it is confirmed that an efficient launcher system is realized.

Analysis of the liquid oxygen consumption during operation of the ground oxidizer supply system (지상 산화제 공급시스템 운용 시 액체산소 소모량 분석)

  • Kim, Ji-Hoon;Park, Soon-Young;Park, Pyun-Goo;Yoo, Byung-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.656-657
    • /
    • 2010
  • The ground oxidizer supply system in the launch site of NARO space center had operated 9 times from the start of tests with ILV on May, 2009 to the 2nd flight test of the NARO vehicle. This system operated successfully for twice launches of the NARO vehicle. To judge the successful operation of the ground facility, it should have reproducibility and reliability. In this report, we have analyzed the liquid oxygen consumption of the system to judge of its reproducibility and it can be a reference for using this system for the next generation of KSLV system.

  • PDF

Study on Temperature Drop Rate during Pressurant Discharge (가압제 토출시 온도강하율에 대한 연구)

  • Chung, Yong-Gahp;Hong, Moon-Geun;Kwon, Oh-Sung;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.116-121
    • /
    • 2006
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. Therefore a significant improvement in pressurization system performance can be achieved, particularly in a cryogenic system. For this study air and $CN_2$ are employed as external fluid and pressurant respectively Numerical analysis on the pressurant discharging characteristics have been compared with the experimental results performed at the PTF(Propellant-feeding Test Facility). It is shown that the discrepancy of analytic and experimental results is within about ${\pm}15%$. It is estimated that the temperature drop rate of cryogenic pressurant immersed liquid oxygen can be predicted using this analytic approach method.

  • PDF

Research Activities on Subsystem Technologies of PDE Propulsions (PDE 추진기관 부체계 기술 연구 동향)

  • Jin, Wan-Sung;Kim, Ji-Hoon;Hwang, Won-Sub;Kim, Jeong-Min;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.712-721
    • /
    • 2015
  • Pulse Detonation Engine (PDE) has been considered as a future propulsion system for broad range of operation and higher thermal efficiency. Various subsystem technologies have been studied for more than decade to improve the performance of the potential system. New valve systems has been developed for the stable operation at high frequency including inflow-driven valve, rotary valve and valveless system. To foster the detonation initiation with a little ignition energy, plasma ignition method and DDT (deflagration to detonation transition) acceleration method such as swept ramp mechanism have been studied. Fluidic nozzle system and other nozzle system are the ongoing research topics to maximize the propulsion performance of the PDE. Present paper introduces the state of the art of PDE subsystem technologies developed in recent years.

Analysis on the Filling Mode of Propellant Supply System for the Korea Space Launch Vehicle (한국형발사체 추진제공급시스템 충전모드 해석)

  • Lee, Jaejun;Park, Sangmin;Kang, Sunil;Oh, Hwayoung;Jung, Eun Sang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • Korean Space Launch Vehicle (KSLV-II) Propellant Supply System charges liquid oxygen and kerosene to each propellant tank for the stages. To charge the launch vehicle propellant tank safety, the propellant charge flow rates and scenarios should be defined. First, the Propellant Supply System was modeled with 1D flow analysis program. The control valve capacity and orifice size were calculated by performing the 1D steady state simulation. Second, the 1D transient simulation was performed by using the steady state simulation results. As propellants were being charged at the each tank, the increased tank liquid level decreases the charge flow rate. Consequently, the proposed supply system satisfies the required design charging conditions.