• Title/Summary/Keyword: Space-charge field

Search Result 172, Processing Time 0.027 seconds

Characteization of Space Charge Distribution and Conduction Current in Dielectric material With Temperature (온도에 따른 유전체내에서의 공간전하 분포와 전도전류 특성)

  • Kim, Jin-Kyun;HwangBo, Seung;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1078-1080
    • /
    • 1995
  • The pulsed electro-acoustic method was used as a nondestructive measurement technique of spare charge distribution in dielectric materials. In our work presented here, we measured simultaneously the space charge distribution and conduction current in the low-density polyethylene samples with elevated temperatures up to $80^{\circ}C$ and electric field up to 20kV/mm. In the temperature less than $50^{\circ}C$, homocharges are mainly accumulated close to the electrodes under DC bias and after grounding. At the temperature exeeds $50^{\circ}C$, heterocharges are accumulated near the opposite electrode under DC bias. However after grounding the upper electrode, this charges immediately disappeared. The conduction current in LDPE at $20^{\circ}C$ and $30^{\circ}C$ was reduced slowly with increasing interval of applied voltage. But as temperature increased, the conduction current tended to increase slowly with the time and the degree of increase is enlarged.

  • PDF

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

The structural and dielectric polarization characteristics of composite oxide material in $(Ba Ca)TiO_3$-Zn (복합산화물 $(Ba Ca)TiO_3$-ZnO의 구조적 및 유전분극 특성)

  • 홍경진;임장섭;정우성;민용기;김용주;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.239-246
    • /
    • 1997
  • The ZnO is stabilize dielectric constant over a broad temperature range because its addition makes the relaxation time short. In this study, the composite oxide material (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ was mixed by ZnO additive material and the dielectric polarization characteristics was studied. The relative density was over 90[%] at all specimen in the structural characteristics. Among of the specimen, the relative density of (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ with ZnO (0.4mol) has a 95[%]. The grain size of composite oxide material with an increasing ZnO increased and it was 1.0[.mu.m]-1.22[.mu.m]. In the electrical characteristics, the charge and discharge current was increased by ZnO addition. The dielectric relaxation time was increased by space charge polarization at above 110[.deg. C] and the dielectric relaxation time was fixed by space charge polarization of para-dielectric layer at below 110[.deg. C]. The dielectric relaxation time was maximum when the grain size was small. The dielectric relaxation time is decreased with an additive material ZnO and interface polarization, existing void at the grain and grain boundary. The remnant polarization is increased and the coercive electric field is decreased by ZnO.

  • PDF

Comparative Study of DC Breakdown and Space Charge Characteristics of Insulation Paper Impregnated with Natural Ester and Mineral Oil

  • Hao, Jian;Zou, Run-Hao;Liao, Rui-Jin;Yang, Li-Jun;Liao, Qiang;Zhu, Meng-Zhao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1682-1691
    • /
    • 2018
  • Natural ester is a suitable substitute for mineral oil and has been widely used in AC transformer in many countries. In order to further application of natural ester in direct current (DC) equipment, it is needed to investigate its long term insulation property under DC condition. In this paper, a thermal ageing experiment was conducted for both mineral oil-paper and natural ester-paper insulation. The DC breakdown and space charge characteristics of insulation paper impregnated with natural ester and mineral oil was compared. Results show that the resistivity of the paper immersed in natural ester and mineral oil both increase as the ageing goes on. While insulation paper impregnated with natural ester has higher resistivity and DC breakdown voltage than the paper impregnated with mineral oil. The DC breakdown voltage for the oil impregnated insulation paper being DC pre-stressing is higher than that without pre-stressing. The average DC breakdown field strength difference between the test with pre-stressing and without pre-stressing clearly shows that there is an apparent enhancement effect for the homo-charge injection on the DC breakdown.

On the Determination of Safe Charge Weigth from the Several Predictive Equations of Blast Vibration (발파진동 예측식을 이용한 안전장약량 산정문제에 관하여)

  • 김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 1995
  • Regression analysis and a comparative study were carried out for 52 blast vibration data which were monitored by changing the monitoring distance and charge per delay. The results are as follows: 1) The square and cube root scalings and general equation which have a confidence level at the point of 90% and 99% are V90=33300(SD)-2.026 , V90=23600(SD)-1.993, V90=26300W0.755 R-2.007 and V99=48400(SD)-2.026, V99=34000(SD)-1.993 , V99=38100W0.755R-2.007, respectively. 2) There is need to decide the allowable max. charge weight per delay considering the cross points comparatively of the nomogram constructed using several predictived equations. 3) It is necessary to derive the predictive equation on the basis of blast vibration level monitored in field and to decide safe vibration level and the confidence level.

  • PDF

Electrostatic Discharge Analysis of n-MOSFET (n-MOSFET 정전기 방전 분석)

  • 차영호;권태하;최혁환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.587-595
    • /
    • 1998
  • Transient thermal analysis simulations are carried out using a modeling program to understand the human body model HBM ESD. The devices were simulated a one-dimensional device subjected to ESD stress by solving Poison's equation, the continuity equation, and heat flow equation. A ramp rise with peak ESD voltage during rise time is applied to the device under test and then discharged exponentially through the device. LDD and NMOS structures were studied to evaluate ESD performance, snap back voltages, device heating. Junction heating results in the necessity for increased electron concentration in the space charge region to carry the current by the ESD HBM circuit. The doping profile adihacent to junction determines the amount of charge density and magnitude of the electric field, potential drop, and device heating. Shallow slopes of LDD tend to collect the negative charge and higher potential drops and device heating.

  • PDF

A Case Study of Combining NDC Blasting Method and Wide Space Blasting Method to Increase Blast Efficiency (NDC 및 Wide Space 혼합공법을 통한 발파효율 개선 사례연구)

  • No, Sang-Lim;Noh, Seung-Hwan;Lee, Sang-Pil;Lee, Hoon-Yeon;Lee, Tai-Ro
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.387-393
    • /
    • 2006
  • This paper introduces the combination of two blasting methods applied to reduce blast-vibration and increase blast efficiency. NDC (New Deck Charge) blasting method using air deck effect with separation tube made of paper was effective to reduce blast-vibration, while blast efficiency was decreased a little in the bottom of a blasthole. Wide Space blasting method has an advantage to control the fragmentation and to increase blast efficiency over conventional blasting methods. In this study new blasting method combining NDC blasting method and Wide Space blasting method was applied to the field, it was confirmed to reduce blast-vibration and increase blast efficiency. It is expected to make useful blasting method to cover the public complaints and to shorten construction time by accumulating blasting data using new method with various conditions.

InAs/GaAs 양자점 태양전지의 Photoreflectance Spectra에서 AlGaAs Potential Barrier 두께에 따른 Franz Keldysh Oscillation 주파수 특성

  • Son, Chang-Won;Lee, Seung-Hyeon;Han, Im-Sik;Min, Seong-Sik;Ha, Jae-Du;Lee, Sang-Jo;Smith, Ryan P.;Kim, Jong-Su;Lee, Sang-Jun;No, Sam-Gyu;Kim, Jin-Su;Choe, Hyeon-Gwang;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.441-441
    • /
    • 2012
  • Franz Keldysh Oscillation (FKO)은 p-n 접합 구조의 Photoreflectance (PR) spectra에서 표면 및 계면의 전기장(electric field) 특성을 반영한다. InAs/GaAs 양자점 태양전지(Quantum Dot Solar Cell, QDSC) 구조에서 InAs 양자점 층 전후에 AlGaAs 층을 삽입하여 퍼텐셜 장벽(potential barrier) 두께에 따른 PR spectra 및 GaAs-matrix에서 FKO 주파수 특성을 비교 분석하였다. InAs/GaAs 양자점 태양전지는 p-i-n 구조의 i-GaAs에 2.0 monolayer (ML), 8주기의 InAs 양자점 층을 삽입하여 Molecular Beam Epitaxy (MBE) 방법으로 성장하였다. 각 양자점 층 전후에 두께가 각각 0.0, 1.6, 2.8, 6.0 nm인 AlGaAs 층을 삽입하여 퍼텐셜 장벽 두께에 따른 FKO 주파수 변화를 관측하였다. 또한 태양전지 구조의 전기장 분포를 좀 더 용이하게 관측하기 위해 여기 광의 세기(power intensity)를 충분히 낮추어 Photovoltaic effect에 의한 내부 전기장의 변화를 최소화하여 비교 분석하였다. InAs/GaAs 양자점 태양전지 구조에서 AlGaAs 장벽층이 없는 경우, PR spectra의 Fast Fourier Transform 결과에 반영되는 FKO 주파수 특성은 p-i-n 구조 계면에서 공핍층(depletion region)의 space charge field보다 양자점 층의 내부 전기장에 의한 FKO 주파수가 더 큰 진폭(amplitude)을 보였다. 반면에, AlGaAs 장벽층이 삽입되면 두께가 커짐에 따라 p-i-n 구조 계면의 space charge field에 의해 더 큰 진폭의 FKO 주파수가 관측되었다. 이는 AlGaAs 장벽층이 삽입됨으로써 양자점 층 내 양자 상태 수 및 여기광에 의한 캐리어의 수와 관련이 있음을 확인하였으며, 결과적으로 GaAs-matrix에서 p-i-n 구조 계면의 space charge field에 영향을 미치게 됨을 알 수 있다. 이러한 PR 특성 결과들을 InAs/GaAs 양자점 태양전지의 설계 및 제조에 반영함으로써 양자효율 증대에 기여할 것으로 기대된다.

  • PDF

Calculation on the Ion Flow Field under HVDC Transmission Lines Considering Wind Effects

  • Wu, Jing;Gao, Sheng;Liu, Yuxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2077-2082
    • /
    • 2015
  • Based on Deutsch assumption, a calculation method on the electric field over the ground surface under HVDC transmission lines in the wind is proposed. Analyzing the wind effects on the electric field and the space charge density the existing method based on Deutsch assumption is improved through adding the wind speed to the ion flow field equations. The programming details are illustrated. The calculation results at zero wind speed are compared with available data to validate the code program. Then the ionized fields which resulted from corona of ±800kV HVDC lines are analyzed. Both the electric field and the current density on the ground level are computed under different wind direction and speed. The computation results are in good agreement with measurements. The presented method and code program can be used to rapidly predict and evaluate the wind effects in HVDC transmission engineering.

The Effect of Electron Diffusion on the Instability of a Townsend Discharge (전자 확산 효과가 Townsend 방전 불안정성에 미치는 영향)

  • Mikhailenko, Vladimir
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • The role of the electron diffusion on the stability of a Townsend discharge was investigated with the linear stability theory for the one-dimensional fluid equation with drift-diffusion approximation. It was proved that the discovered instability occurs as a result of the coupled action of electron diffusion and the perturbed electric field by space charge. The larger electron diffusion results in the faster growth rate at the regime of small perturbation of the electric field by space charges.