• Title/Summary/Keyword: Space telescope

Search Result 945, Processing Time 0.035 seconds

PHOTOMETRIC STUDIES OF THE CONTACT BINARY BV DRACONIS (접촉쌍성 BV Draconis의 측광학적 연구)

  • 이재우;한원용;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.227-240
    • /
    • 1999
  • We performed CCD photometric observations of W UMa type contact binary BV Dra during eight nights from May 1996 to June 1999 using 61cm telescope at Sobaeksan Optical Astronomy Observatory, and completed BV R light curves of the system. From our observations, we derived nine new times of minimum lights (five timings for primary eclipse, four for secondary) and determined new light elements with the times of minima observed since 1999. Our BV R light curves and Batten & Lu(1986)'s radial-velocity ones were simultaneously analyzed with contact mode (Mode 3) of Wilson-Devinney's binary model, and the photometric and spectroscopic solutions for BV Dra were solved. In the analysis, we derived the solutions of 1999 light curves with and without spots, respectively. As the results, asymmetry of light curves may be interpreted as produced by the existence of two spots; hot spot on the secondary and cool on the primary. Combining solutions of light curves and radial-velocity ones, absolute dimensions of BV Dra are $M_1=0.40M_{odot}$, $M_2=1.01M_{odot}$, $R_1=0.72R_{odot}$, $R_2=0.40R_{odot}$. In mass-radius diagram, the less massive and hotter primary component of BV Dra is near TAMS and the secondary is near ZAMS, which is very similar to the other W-type W UMa binaries.

  • PDF

SPIN PERIODS ESTIMATION OF GEOSTATIONARY SPIN-STABILIZED SATELLITES (정지궤도 회전안정화 위성의 자전주기 추정)

  • 이동규;김상준;박준성;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • Optical observations of Geostationary and Molynia orbit spin-stabilized satellites over the Korean peninsula have been carried out at the Kyung Hee University Observatory with a 30 inch telescope. We have observed 5 spin-stabilized satellites, and obtained 0spin periods, which can be used for deducing a design for each bus model. Verifications of spin periods of 3 known satellites from manufacturer, and observations of 2 unknown satellites were made. The difference between known spin periods and observed spin periods is 0.06sec on the average and the difference of those spin rates is 3.3rpm on the average. Those results indicate that spin periods and spin rates of observed geostationary spin-stabilized satellites are within operating limits. Spin rates of unknown satellites, Fengyun 2B and Molynia 1-87 are 89.3rpm, 78.4rpm earh. It is suggested that the research of spin stabilized satellites can be used for the determinations of standard light sources for short period celestial objects and helpful for the constructions of satellite databases with photometric and/or spectroscopic satellite observations.

A Motor-Driven Focusing Mechanism for Small Satellite (소형위성용 모터 구동형 포커싱 메커니즘)

  • Jung, Jinwon;Choi, Junwoo;Lee, Dongkyu;Hwang, Jaehyuck;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2018
  • The working principle of a satellite camera involves a focusing mechanism for controlling the focus of the optical system, which is essential for proper functioning. However, research on focusing mechanisms of satellite optical systems in Korea is in the beginning stage and developed technology is limited to a thermal control type. Therefore, in this paper, we propose a motor-driven focusing mechanism applicable to small satellite optical systems. The proposed mechanism is designed to generate z-axis displacement in the secondary mirror by a motor. In addition, three flexure hinges have been installed on the supporter for application of preload on the mechanism resulting in minimization of the alignment error arising due to manufacturing tolerance and assembly tolerance within the mechanism. After fabrication of the mechanism, the alignment errors (de-space, de-center, and tilt) were measured with LVDT sensors and laser displacement meters. Conclusively, the proposed focusing mechanism could achieve proper alignment degree, which can be applicable to small satellite optical system.

NARROW-BAND SPECTROPHOTOMETRY OF COMET HALE-BOPP (C/1995 O1) NEAR PERIHELION I : PHOTOMETRIC BEHAVIOR OF $C_2$, $C_3$, CN MOLECULAR BANDS (헤일-밥 혜성(Comet Hale-Bopp, C/1995 O1)에 대한 근일점 근처에서의 분광측광 I : $C_2$, $C_3$, CN 분자 방출선의 측광학적 특성)

  • 성언창;김호일;윤재혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.199-210
    • /
    • 2000
  • We present the results from narrow-band spectrophotometry of Comet Hale-Bopp (C/1995 O1) near perihelion obtained at Sobaeksan Optical Astronomy Observatory 61cm telescope equipped with PM 512 CCD camera(512$\times$512, 0.5"/pixel) and narrow-band filter set for the comet on 19 nights from February 21 to May 1, 1997. We discuss molecular emission band morphology and photometric behavior of Comet Hale-Bopp. The morphology of CN band shows more symmetric light distributions than $C_2$ or $C_3$ bands. On other hand, $C_2$ and $C_3$ band have more compact light distributions than CN band. Similar to wide-band image, molecular band morphology shows spiral structures at the core of the comet. The CN surface brightness variation with changing heliocentric distance shows difference from those of $C_2$ and $C_3$. The brightness, however, of these molecular bands near perihelion shows previously known 7day period light variations.

  • PDF

FOLLOW-UP OBSERVATIONS TOWARD PLANCK COLD CLUMPS WITH GROUND-BASED RADIO TELESCOPES

  • LIU, TIE;WU, YUEFANG;MARDONES, DIEGO;KIM, KEE-TAE;MENTEN, KARL M.;TATEMATSU, KEN;CUNNINGHAM, MARIA;JUVELA, MIKA;ZHANG, QIZHOU;GOLDSMITH, PAUL F;LIU, SHENG-YUAN;ZHANG, HUA-WEI;MENG, FANYI;LI, DI;LO, NADIA;GUAN, XIN;YUAN, JINGHUA;BELLOCHE, ARNAUD;HENKEL, CHRISTIAN;WYROWSKI, FRIEDRICH;GARAY, GUIDO;RISTORCELLI, ISABELLE;LEE, JEONG-EUN;WANG, KE;BRONFMAN, LEONARDO;TOTH, L. VIKTOR;SCHNEE, SCOTT;QIN, SHENGLI;AKHTER, SHAILA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature (< 14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from a mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.

Doppler Shifts of the $H{\alpha}$ Line and the Ca II 854.2 nm Line in a Quiet Region of the Sun Observed with the FISS/NST

  • Chae, Jongchul;Park, Hyungmin;Yang, Heesu;Park, Young-Deuk;Cho, Kyung-Suk;Ahn, Kwangsu;Cao, Wenda
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2012
  • The characteristics of Doppler shifts in a quiet region of the Sun are investigated by comparing between the $H{\alpha}$ line and the Caii infrared line at 854.2 nm. A small area of $16^{\prime\prime}{\times}40^{\prime\prime}$ was observed for about half an hour with the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory. The observed area contains a network region and an internetwork region, and identified in the network region are $H{\alpha}$ fibrils, Caii fibrils and bright points. We infer the Doppler velocity from each line profile at a point with the lambdameter method as a function of half wavelength separation ${\Delta}{\lambda}$. It is confirmed that the bisector of the spatially-averaged Caii line profile has an inverse C-shape of with a significant peak redshift of +1.8 km/s. In contrast, the bisector of the spatially-averaged $H{\alpha}$ line profile has a different shape; it is almost vertically straight or, if not, has a C-shape with a small peak blueshift of -0.5 km/s. In both the lines, the bisectors of bright network points are much different from those of other features in that they are significantly redshifted not only at the line centers, but also at the wings. We also find that the spatio-temporal fluctuation of Doppler shift inferred from the Caii line is correlated with those of the $H{\alpha}$ line. The strongest correlation occurs in the internework region, and when the inner wings rather than the line centers are used to determine Doppler shift. In this region, the RMS value of Doppler shift fluctuation is the largest at the line center, and monotonically decreases with ${\Delta}{\lambda}$. We discuss the physical implications of our results on the formation of the $H{\alpha}$ line and Caii 854.2 nm line in the quiet region chromosphere.

  • PDF

A study on the actuator arrays of a deformable mirror for adaptive optics (적응광학계 변형거울의 구동기 배열에 따른 성능 변화 연구)

  • 엄태경;이완술;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2002
  • In the earth telescope for space observation, the adaptive optical (AO) system that immediately compensates atmospheric turbulence is helpful to get high-resolution images. An adaptive optics for earth telescopes is very attractive, since the Earth telescopes can be made at lower costs and have larger optical apertures than space telescopes. Generally. in order to remove the wavefront error produced by atmospheric turbulence, a deformable mirror, whose surface shape changes in a controllable way in response to a drive signal, is used. The characteristics and patterns of actuators are very important for the effective control of a deformable mirror. The mirror surface shape deformed by one actuator is defined as an influence function and the deformable mirror can be effectively modeled and designed using this influence function. In this paper. by simplifying the actual influence function obtained by FEM analyses into the Gaussian function and introducing the coupling coefficient between actuators, the influence function is constructed. The proper coupling coefficient of the target system can be obtained by performance analyses of a deformable mirror for various coupling coefficients. Using the constructed influence function, the deformable mirror with equally spaced triangular and square actuator patterns is analyzed for various spacings and an effective actuator pattern is proposed.

ALGORITHMS FOR MOVING OBJECT DETECTION: YSTAR-NEOPAT SURVEY PROGRAM (이동천체 후보 검출을 위한 알고리즘 개발: YSTAR-NEOPAT 탐사프로그램)

  • Bae, Young-Ho;Byun, Yong-Ik;Kang, Yong-Woo;Park, Sun-Youp;Oh, Se-Heon;Yu, Seoung-Yeol;Han, Won-Young;Yim, Hong-Suh;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.393-408
    • /
    • 2005
  • We developed and compared two automatic algorithms for moving object detections in the YSTAR-NEOPAT sky survey program. One method, called starlist comparison method, is to identify moving object candidates by comparing the photometry data tables from successive images. Another method, called image subtraction method, is to identify the candidates by subtracting one image from another which isolates sources moving against background stars. The efficiency and accuracy of these algorithms have been tested using actual survey data from the YSTAR-NEOPAT telescope system. For the detected candidates, we performed eyeball inspection of animated images to confirm validity of asteroid detections. Main conclusions include followings. First, the optical distortion in the YSTAR-NEOPAT wide-field images can be properly corrected by comparison with USNO-B1.0 catalog and the astrometric accuracy can be preserved at around 1.5 arcsec. Secondly, image subtraction provides more robust and accurate detection of moving objects. For two different thresholds of 2.0 and $4.0\sigma$, image subtraction method uncovered 34 and 12 candidates and most of them are confirmed to be real. Starlist comparison method detected many more candidates, 60 and 6 for each threshold level, but nearly half of them turned out to be false detections.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Kinematics of the Northern Filament in Orion Molecular Clouds Complex Using 12CO Molecular Observation Data (12CO 분자선 관측 자료를 이용한 오리온 분자운 복합체내 북쪽 필라멘트의 운동학 연구)

  • Jo, Hoon;Sohn, Jungjoo;Kim, ShinYoung;Lee, JeeWon;Kim, Sungsoo S.;Morris, Mark
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.519-532
    • /
    • 2018
  • We investigated the effect of galactic plane toward molecular motion and kinematics in the northern filament (NF) of Orion Molecular Clouds Complex (OMC) using $^{12}CO$ (J=1-0) line. Observed data were from three areas including NF1, NF2, and NF3 in far-out order from galactic plane, for a total 270 hours by Seoul National University Radio Astronomy Observatory (SRAO) 6m telescope, with 2arcmin spatial resolution. galactic plane and OMC NF were connected to each other along the magnetic field at a density of 3% for $^{12}CO$ (J=2-1) and 9% for the case of dust. $^{12}CO$ (J=1-0), $^{12}CO$ (J=2-1), and interstellar dusts were distributed uniformly in NF3, but only in certain regions with relatively high density in NF1 and NF2. NF showed a single structure, partial shrinking motion in NF1, and rotational motion at the bottom of NF2, and spiral rotation associated with magnetic field only in NF3. The position-velocity analysis showed that the materials including $^{12}CO$ (J=1-0) could flow toward galactic plane along NF2 and NF3. However, there was no clear cause for the material to flow toward galactic plane in this result. Further detailed observation for rotational motion at the top of NF1 and NF2 might help to confirm it.