• 제목/요약/키워드: Space search optimization

검색결과 235건 처리시간 0.037초

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

확률적 타부 탐색 전략을 이용한 새로운 함수 최적화 방법에 관한 연구 (A Study on a New Function Optimization Method Using Probabilistic Tabu Search Strategy)

  • 김형수;황기현;박준호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.532-540
    • /
    • 2001
  • In this paper, we propose a probabilistic tabu search strategy for function optimization. It is composed of two procedures, one is Basic search procedure that plays a role in local search, and the other is Restarting procedure that enables to diversify search region. In basic search procedure, we use Belief space and Near region to create neighbors. Belief space is made of high-rank neighbors to effectively restrict searching space, so it can improve searching time and local or global searching capability. When a solution is converged in a local area, Restarting procedure works to search other regions. In this time, we use Probabilistic Tabu Strategy(PTS) to adjust parameters such as a reducing rate, initial searching region etc., which makes enhance the performance of searching ability in various problems. In order to show the usefulness of the proposed method, the PTS is applied to the minimization problems such as De Jong functions, Ackley function, and Griewank functions etc., the results are compared with those of GA or EP.

  • PDF

Species Adaptation Evolutionary Algorithm for Solving the Optimization Problems

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.233-238
    • /
    • 2003
  • Living creatures maintain their variety through speciation, which helps them to have more fitness for an environment. So evolutionary algorithm based on biological evolution must maintain variety in order to adapt to its environment. In this paper, we utilize the concept of speciation. Each individual of population creates their offsprings using mutation, and next generation consists of them. Each individual explores search space determined by mutation. Useful search space is extended by differentiation, then population explorers whole search space very effectively. If evolvable hardware evolves through mutation, it is useful way to explorer search space because of less varying inner structure. We verify the effectiveness of the proposed method by applying it to two optimization problems.

개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계 (Design of IG-based Fuzzy Models Using Improved Space Search Algorithm)

  • 오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.

Subspace search mechanism and cuckoo search algorithm for size optimization of space trusses

  • Kaveh, A.;Bakhshpoori, T.
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.289-303
    • /
    • 2015
  • This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the computational time for convergence of population based metaheusristic algorithms. The selected metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses. The complexity of structural optimization problems can be partially due to the presence of high-dimensional design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each subspace. Optimizer updates the design variables for each subspace independently. Updating rules require candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to work with less number of population (42%), as a result reducing the time of convergence, in exchange for some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of complexity. This suggests its applicability to other algorithms and other complex finite element-based engineering design problems.

Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화 (Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm)

  • 이강석;김정희;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

유전자형-표현형 개념을 적용한 수정된 이진 입자군집최적화 (버전 2) (Modified Binary Particle Swarm Optimization using Genotype-Phenotype Concept (Version 2))

  • 임승균;이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.541-548
    • /
    • 2014
  • 본 논문에서는 유전알고리즘의 유전자형-표현형 기법을 적용한 수정된 이진 입자군집최적화의 두 번째 버전을 소개한다. 입자군집최적화는 해를 탐색해 나가는 과정에서 주변의 우수한 해의 위치와 자신의 위치차이 정보를 이용한다. 이러한 위치 차이를 구하는데 있어서 첫 번째 버전의 수정된 이진 입자군집최적화는 표현형을 사용한 반면에 제안하는 버전은 유전자형을 사용한다. 이진 정보만을 제공하는 표현형에 비해 연속 공간 전체를 탐색공간으로 제공하는 유전자형 정보를 사용하여 해 공간을 보다 넓은 공간으로 표시할 수 있다. 벤치마크 함수인 10개의 De Jong 함수에 실험한 결과, 두 번째 버전은 탐색 공간이 넓고 지역 최적해가 많은 함수에서 첫 번째 버전에 보다 우수한 결과를 얻었다.

연속탐색공간에 대한 진화적 해석 (Evolutionary Analysis for Continuous Search Space)

  • 이준성;배병규
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.206-211
    • /
    • 2011
  • 본 논문에서는 연속적인 파라미터 공간에 대한 최적화에 대해 진화적 알고리즘의 특징적인 형상화를 제시한다. 이 방법은유전알고리즘이 연속적인 탐색공간에서의 파라미터 식별에 대해 가장 강점을 지녔다는 점에 착안한 것이다. 유전알고리즘과 제안한 알고리즘과의 주요한 차이점은 개별적 또는 연속적인 묘사의 차이가 있다는 것이다. 잘 알려진 실험함수의 최적화문제를 도입하여 연속 탐색공간 문제에 대해 제안하는 알고리즘에 대해 계산시간 및 사용메모리 등의 성능이 우수하다는 효율성을 보였다.