• Title/Summary/Keyword: Space radiation

Search Result 1,042, Processing Time 0.027 seconds

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Development of Life Science and Biotechnology by Marine Microorganisms (해양 미생물을 활용한 생명과학 및 생명공학 기술 개발)

  • Yongjoon Yoon;Bohyun Yun;Sungmin Hwang;Ki Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.593-604
    • /
    • 2023
  • The ocean accounts for over 70% of the Earth's surface and is a space of largely unexplored unknowns and opportunities. Korea is a peninsula surrounded by the sea on three sides, emphasizing the importance of marine research. The ocean has an extremely complex environment with immense biological diversity. In terms of microbiology, the marine environment has varying factors like extreme temperature, pressure, solar radiation, salt concentration, and pH, providing ecologically unique habitats. Due to this variety, marine organisms have very different phylogenetic classifications compared with terrestrial organisms. Although various microorganisms inhabit the ocean, studies on the diversity, isolation, and cultivation of marine microorganisms and the secondary metabolites they produce are still insufficient. Research on bioactive substances from marine microorganisms, which were rarely studied until the 1990s, has accelerated in terms of natural products from marine Actinomycetes since the 2000s. Since then, industries for bioplastic and biofuel production, carbon dioxide capture, probiotics, and pharmaceutical discovery and development of antibacterial, anticancer, antioxidant, and anti-inflammatory drugs using bacteria, archaea, and algae have significantly grown. In this review, we introduce current research findings and the latest trends in life science and biotechnology using marine microorganisms. Through this article, we hope to create consumer awareness of the importance of basic and applied research in various natural product-related discovery fields other than conventional pharmaceutical drug discovery. The article aims to suggest pathways that may boost research on the optimization and application of future marine-derived materials.

Comparison of the Vertical Data between Eulerian and Lagrangian Method (오일러와 라그랑주 관측방식의 연직 자료 비교)

  • Hyeok-Jin Bae;Byung Hyuk Kwon;Sang Jin Kim;Kyung-Hun Lee;Geon-Myeong Lee;Yu-Jin Kim;Ji-Woo Seo;Yu-Jung Koo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1009-1014
    • /
    • 2023
  • Comprehensive observations of the Euler method and the Lagrangian method were performed in order to obtain high-resolution observation data in space and time for the complex environment of new city. The two radiosondes, which measure meteorological parameters using Lagrangian methods, produced air pressure, wind speed and wind direction. They were generally consistent with each other even if the observation points or times were different. The temperature measured by the sensor exposed to the air during the day was relatively high as the altitude increased due to the influence of solar radiation. The temporal difference in wind direction and speed was found in the comparison of Euler's wind profiler data with radiosonde data. When the wind field is horizontally in homogeneous, this result implies the need to consider the advection component to compare the data of the two observation methods. In this study, a method of using observation data at different times for each altitude section depending on the observation period of the Euler method is proposed to effectively compare the data of the two observation methods.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens (도심 가로 녹음의 습구흑구온도(WBGT) 측정을 통한 보행자 열쾌적성 효과 분석)

  • Ahn, Tong-Mahn;Lee, Jae-Won;Kim, Bo-Ram;Yoon, Ho-Seon;Son, Seung-Woo;Choi, Yoo;Lee, Na-Rae;Lee, Ji-Young;Kim, Hae-Ryung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.22-30
    • /
    • 2013
  • This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".

A Study on the Preference Factors of KakaoTalk Emoticon (카카오톡 이모티콘 선호도에 미치는 영향 요인에 관한 연구)

  • Lee, Jong-Yoon;Eune, Juhyun
    • Cartoon and Animation Studies
    • /
    • s.51
    • /
    • pp.361-390
    • /
    • 2018
  • Users of KakaoTalk emoticons use Kakao Talk emoticons as means of communicating their emotions in virtual space. Emotional state is represented by design element (auxiliary, color, form, motion) and storytelling element contained in emoticons. The purpose of this study is to investigate the factors of the storytelling and design elements of kakaoTalk emoticons and how they prefer the kakaoTalk emoticons as emotional expression means. In terms of storytelling, crocodiles, peaches, dogs, ducks, lions, moles, and rabbits were made up of ordinary fruits and animals. Most of the emoticons are composed of stories with unique personality, and each story has a complex one by one, which makes it easy for users to approach and use them. In terms of design, I used various auxiliary elements (flame, sweat, tears, runny nose, angry eyes, etc.) to express angry, sincere, nervous, begging, joy, and sadness. The color elements consisted of most of the warm color series with the unique colors (green, red, yellow, pink, white, black, brown, etc.) of emoticon characters regardless of feelings of joy, anger, sadness, pleasure. The form factor is composed of a round shape when expressing factors such as joy and sadness. On the other hand, when FRODO and NEO express sadness and anger, they represent the shape of a rectangle. The motion elements are horizontal, vertical, and oblique expressions of APPEACH, NEO, TUBE, and JAY-G, expressing emotional expressions of sadness, anger, and pleasure. APEACH, TUBE, MUZI & / Shows the dynamic impression of the oblique and the radiation / back / forward / rotation. The anger of TUBE and FRODO shows horizontal / vertical / diagonal and radial motion. As a result of this study, storytelling is structured in accordance with each emoticon character. In terms of design, auxiliary elements such as flame, sweat, and tears are represented by images. The color elements used the unique colors of the character series regardless of the difference of emotion. The form factor represented various movements for each emotion expression. These findings will contribute to the development of communication, emotional design and industrial aspects. Despite the significance of the above paper, I would like to point out that the analysis framework of the storytelling and the semiotic analysis of the supplementary elements are not considered as limitations of the study.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.