• Title/Summary/Keyword: Space mean speed

Search Result 87, Processing Time 0.023 seconds

Alternative Energy - Environment Safety

  • Kurnaz, Sefer;Rustamov, Rustam B.;Zeynalov, Ismayil
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • It is undertaken systematization of results of satellite and ground observation parameters characterizing a current condition and climatic variability of two selected geographical areas. One of them covers territory of Azerbaijan and another covers a wide area of Caspian See region. Average values and mean square deviations of following values are investigated: outgoing long wave radiation during a day and night (in nebulosity and cloudless). absorbed within a day of the stream of a sunlight of the system in "a terrestrial surface-atmosphere". degree of a covering by clouds of the selected areas during a day and at night, ground temperature values of air. pressure and speed of a wind. Monthly average values of corresponding parameters create a basis of suggested investigations. It has been presented features of a time course of investigated parameters for each month and year in the whole due to the continuously observations since 1982-2000. The scientific problem consists that there are no existed models which authentically would be cover the main aspects of a realities specified changes: they are identified by economic activities. growth of the population and other features of development of a human society or internal fluctuations of biogeophysical/climatic system. Possibilities of predictability of biosphere and climate changes depend on available timely supervision. adequacy of construction of appropriate models. understanding of mechanisms of direct and feedback influences in such complicated systems.

Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation (Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가)

  • Jeon, Mi-Young;Lee, Seung-Jae;Kim, Ji-Yoeng;Leigh, Seung-Bok;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

Comparison of the WSA-ENLIL CME propagation model with three cone types and an empirical model

  • Jang, Soojeong;Moon, Yong-Jae;Na, HyeonOck
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.124.1-124.1
    • /
    • 2012
  • We have made a comparison of the WSA-ENLIL CME propagation model with three cone types and an empirical model using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL CME propagation model. The mean absolute error (MAE) of the arrival times at the Earth for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  • PDF

TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU (Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정)

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Among the interplanetary shock (IP shock)s observed by ACE spacecraft at 1AU during 1997 to 2000, we have selected 31 IP shocks which had triggered the interplanetary type II radio bursts detected by the WIND spacecraft while those shocks were leaving the Sun. We compared the observed IP shock propagation speeds and the IP shock transit speeds estimated by time difference between the interplanetary type II radio burst detection and the IP shock observation. Then, we found that the mean acceleration of the IP shocks between the Sun and the Earth is about $-1.02m/sec^2$, which means the deceleration contrary to the positive acceleration predicted by Parker solar wind model. It is also verified that the acceleration of the IP shock does not show any linear correlation with the shock propagation speed and the Mach number of the IP shock.

Stereoscopic observations of front-side halo CMEs by SOHO and STEREO from 2009 to 2013

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Roksoon;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2015
  • We present a comprehensive catalog of 307 front-side halo (partial and full) CMEs during 2009 and 2013 observed by both SOHO and STEREO. This catalog includes 2D CME properties from single spacecraft (SOHO) as well as 3D ones from multi-spacecraft. To determine the 3D CME properties (speed, angular width, and source location), we use the STEREO CME analysis tool based on a triangulation method. In this paper, we compare between 2D and 3D CME properties, which is the first statistical comparison between them. As a result, we find that 2D speeds tend to be about 20% underestimated when compared to 3D ones. The 3D angular width ranges from $15^{\circ}$ to $109^{\circ}$, which are much smaller than the 2D angular widths with the mean value of $225^{\circ}$. We also find that a ratio between 2D and 3D angular width decreases with central meridian distance. The 3D source locations from the triangulation method are similar to the flare locations. The angular width-speed relationship in 3D is much stronger than that in 2D.

  • PDF

A linear model for structures with Tuned Mass Dampers

  • Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.151-171
    • /
    • 1999
  • In its 90 years of life, the Tuned Mass Damper have found application in many fields of engineering as a vibration reducing device. The evolution of the theory of TMDs is briefly outlined in the paper. A generalised mathematical linear model for the analysis of the response of line-like structures with TMDs is presented. The system matrices of the system including the TMDs are written in the state space as a function of the mean wind speed. The stability of the system can be analysed and the Power Spectral Density Function of any response parameter calculated, taking into account an arbitrary number of modes of vibration as well as an arbitrary number of TMDs, for any given PSDF of the excitation. The procedure can be used to optimise the number, position and mechanical properties of the damping devices, with respect to any response parameter. Due to the stationarity of the excitation, the method is well suited to structures subjected to the wind action. In particular the procedure allows the calculation of the onset galloping wind speed and the response to buffeting, and a linearisation of the aeroelastic behaviour allows its use also for the evaluation of the response to vortex shedding. Finally three examples illustrate the suggested procedure.

Performance Comparison of Various Extended Kalman Filter and Cost-Reference Particle Filter for Target Tracking with Unknown Noise (노이즈 불확실성하에서의 확장칼만필터의 변종들과 코스트 레퍼런스 파티클필터를 이용한 표적추적 성능비교)

  • Shin, Myoungin;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.99-107
    • /
    • 2018
  • In this paper, we study target tracking in two dimensional space using a Extended Kalman filter(EKF), various Extended Kalman Filter and Cost-Reference Particle Filter(CRPF), which can effectively estimate the state values of nonlinear measurement equation. We introduce various Extended Kalman Filter which the Unscented Kalman Filter(UKF), the Central Difference Kalman Filter(CDKF), the Square Root Unscented Kalman Filter(SR-UKF), and the Central Difference Kalman Filter(SR-CDKF). In this study, we calculate Mean Square Error(MSE) of each filters using Monte-Carlo simulation with unknown noise statistics. Simulation results show that among the various of Extended Kalman filter, Square Root Central Difference Kalman Filter has the best results in terms of speed and performance. And, the Cost-Reference Particle Filter has an advantageous feature that it does not need to know the noise distribution differently from Extended Kalman Filter, and the simulation result shows that the excellent in term of processing speed and accuracy.

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Comparison of Cone Model Parameters for Halo Coronal Mass Ejections

  • Na, Hyeon-Ock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observations, we consider two CME cone models: an ice-cream cone model and an asymmetric cone model. These models allow us to determine three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and cone axis. In this study, we compare these parameters obtained from both models using 50 well-observed HCMEs from 2001 to 2002. Then we obtain the root mean square error (RMS error) between measured projection speeds and estimated ones for the models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R=0.89), and the correlation coefficient of angular width is 0.68. The correlation coefficient of the angle between sky plane and cone axis is 0.42, which is much smaller than what is expected. The reason may be due to the fact that the source locations of the asymmetric cone model are assumed to be near the center. The average RMS error of the asymmetric cone model (86.2km/s) is slightly smaller than that of the ice-cream cone model (88.6km/s).

  • PDF

A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor (정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2002
  • The performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3$/min at 290mmAq static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to three times of stator axial chord length, and performance curves are obtained with 9 different axial gaps. The efficiency varies about 8% of its peak value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.6-1.9Cx.